Consider the problem of generating humanoid motions in an environment consisting of horizontal patches located at different heights (world of stairs). To this end, the paper proposes an integrated scheme which combines footstep planning and gait generation. In particular, footsteps are produced by a randomized algorithm that guarantees both feasibility and quality of the plan according to a chosen criterion; whereas for 3D gait generation we devise an ad hoc extension of the Intrinsically Stable MPC scheme. In its basic form, the proposed scheme addresses the off-line case (known environments), but a sensor-based adaptation is developed for the on-line case (unknown environments) based on an anytime version of the footstep planner. In order to validate the proposed approach, we present simulations in CoppeliaSim for the HRP-4 humanoid robot navigating scenarios of different complexity, both in the on-line and off-line case.
Humanoid motion generation in a world of stairs / Cipriano, Michele; Ferrari, Paolo; Scianca, Nicola; Lanari, Leonardo; Oriolo, Giuseppe. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - 168:(2023). [10.1016/j.robot.2023.104495]
Humanoid motion generation in a world of stairs
Michele Cipriano;Paolo Ferrari;Nicola Scianca
;Leonardo Lanari;Giuseppe Oriolo
2023
Abstract
Consider the problem of generating humanoid motions in an environment consisting of horizontal patches located at different heights (world of stairs). To this end, the paper proposes an integrated scheme which combines footstep planning and gait generation. In particular, footsteps are produced by a randomized algorithm that guarantees both feasibility and quality of the plan according to a chosen criterion; whereas for 3D gait generation we devise an ad hoc extension of the Intrinsically Stable MPC scheme. In its basic form, the proposed scheme addresses the off-line case (known environments), but a sensor-based adaptation is developed for the on-line case (unknown environments) based on an anytime version of the footstep planner. In order to validate the proposed approach, we present simulations in CoppeliaSim for the HRP-4 humanoid robot navigating scenarios of different complexity, both in the on-line and off-line case.File | Dimensione | Formato | |
---|---|---|---|
Cipriano_Humanoid_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.