In this letter, we propose a pose-landmark graph optimization back-end that supports maps consisting of points, lines, or planes. Our back-end allows representing both homogeneous ( point–point , line–line , plane–plane ) and heterogeneous measurements ( point-on-line , point-on-plane , line-on-plane ). Rather than treating all cases independently, we use a unified formulation that leads to both a compact derivation and a concise implementation. The additional geometric information, deriving from the use of higher dimension primitives and constraints, yields to increased robustness and widens the convergence basin of our method. We evaluate the proposed formulation both on synthetic and raw data. Finally, we made available an open-source implementation to replicate the experiments.

Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization / Aloise, Irvin; Della Corte, Bartolomeo; Nardi, Federico; Grisetti, Giorgio. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 4:3(2019), pp. 2738-2745. [10.1109/LRA.2019.2918054]

Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization

Aloise, Irvin
;
Della Corte, Bartolomeo;Nardi, Federico;Grisetti, Giorgio
2019

Abstract

In this letter, we propose a pose-landmark graph optimization back-end that supports maps consisting of points, lines, or planes. Our back-end allows representing both homogeneous ( point–point , line–line , plane–plane ) and heterogeneous measurements ( point-on-line , point-on-plane , line-on-plane ). Rather than treating all cases independently, we use a unified formulation that leads to both a compact derivation and a concise implementation. The additional geometric information, deriving from the use of higher dimension primitives and constraints, yields to increased robustness and widens the convergence basin of our method. We evaluate the proposed formulation both on synthetic and raw data. Finally, we made available an open-source implementation to replicate the experiments.
2019
SLAM; Mapping; Robotics
01 Pubblicazione su rivista::01a Articolo in rivista
Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization / Aloise, Irvin; Della Corte, Bartolomeo; Nardi, Federico; Grisetti, Giorgio. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 4:3(2019), pp. 2738-2745. [10.1109/LRA.2019.2918054]
File allegati a questo prodotto
File Dimensione Formato  
Aloise_Systematic-Handling_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Contatta l'autore
Aloise_postprint_Systematic-Handling_2019.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/8718552
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 790.4 kB
Formato Adobe PDF
790.4 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1279803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact