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Abstract—In this paper1, we propose a pose-landmark graph
optimization back-end that supports maps consisting of points,
lines or planes. Our back-end allows representing both homoge-
neous (point-point, line-line, plane-plane) and heterogeneous mea-
surements (point-on-line, point-on-plane, line-on-plane). Rather
than treating all cases independently, we use a unified formu-
lation that leads to both a compact derivation and a concise
implementation. The additional geometric information, deriving
from the use of higher-dimension primitives and constraints,
yields to increased robustness and widens the convergence basin
of our method. We evaluate the proposed formulation both on
synthetic and raw data. Finally, we made available an open-
source implementation to replicate the experiments.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM) prob-
lem is well-known in Robotics. The goal of a SLAM system
is to concurrently estimate the position of the robot and a map
of its operating environment from robot measurements. SLAM
is a key component of more complex systems such as au-
tonomous driving vehicles, home service robots or augmented
reality applications. Due to its relevance, SLAM has been for
more than two decades one of the most active research fields in
robotics. Over the years, we have seen an impressive evolution
in the hardware (sensors and computation). To use this more
powerful hardware or to adapt to new sensors, a SLAM system
has to be scalable. This consideration promoted a paradigm
shift from filtering based SLAM approaches to more modular
factor-graph based systems, the latter becoming nowadays the
de-facto SLAM standard [1].

A factor-based SLAM system consists of two components:
a front-end and a back-end. The former takes as input raw
data, generating a factor-graph representing map and robot
trajectory. The variables in a factor-graph are either robot
poses or salient landmarks in the map. The factors encode
measurements correlating one or more variables. In the special
case of measurements involving only pairs of variables, a
factor graph degenerates to a regular graph where the factors
are encoded in the edges. If the variables represent only the
poses of the robot the graph further specializes to a pose-
graph [2]. The role of the back-end is to find a solution for the
factor graph generated by the front-end. A solution of a factor
graph is a configuration of the variables that better explains

1This paper has been selected to appear also in IEEE Robotics and
Automation Letters, under the same title.

Fig. 1: Reconstruction and relative optimized graph obtained from the
sequence lr/tr1 of the ICL-NUIM dataset. The proposed approach takes
advantage of the high-dimension primitives extracted from the environment,
such as planes and lines, along with points, to perform accurate and robust
optimization.

the measurements encoded in the factors. Possibly, a back-end
should also provide an estimate of the solution’s uncertainty.
Nearly all modern state-of-the art SLAM systems are graph-
based. The main distinction is between pose-landmark systems
[3] [4] [5] [6] [7] where the variables consist of robot poses
and landmarks and pose-pose systems [8], [9] where each node
stores a local map or a dense measurement acquired at that
robot position.

Most of the pose-landmark systems rely on point landmarks
since they are easy to detect and there is solid literature on
how to compute descriptors for visual features from point
landmarks. Despite their attractiveness, using only points as
landmarks neglects potentially useful structural information
that can be captured by higher dimension primitives, such as
planes or lines. Expressing a set of points extracted from a
planar surface as a plane reduces the amount of information
stored [10], while yielding to comparable accuracy in cloud
registration problems [11]. The same considerations apply
when representing a set of collinear points as a line [12].

In our previous work [10], we proposed a unified represen-
tation for local maps consisting of points, planes, and lines. A
generic element of the map is called matchable, regardless of
its type. We furthermore proposed both an iterative and a direct
solver that can solve the registration problem between two sets
of matchables, given a set of geometric constraints between
them. Notably, the constraints between two matchables can
be of any type (point-point, point-line, point-plane, line-line,
line-plane and plane-plane). This system allows determining
the single most likely robot position that registers one set of



primitives onto the other. The two scenes are regarded as rigid
bodies.

In this work, we address the problem of global optimiza-
tion, by proposing a SLAM back-end that takes a pose-
landmark graph constructed from odometry and matchable
measurements. The outcome of our back-end is the most likely
configuration of robot poses and matchables with respect to
the measurements. With this unified representation, we can
model heterogeneous constraints, that is, a landmark can be
observed as a primitive of a different type. As an example,
a line-plane constraint can capture the observation of a wall
landmark made by a planar laser scanner.

If we exclude the heterogeneous constraints that are charac-
teristic of our system, our back-end is functionally equivalent
to recent approaches that operate on high-dimension primi-
tives [13] [14] [15]. Most of these systems rely on a front-end
tailored for RGB-D data. In this case, the main difference
between our approach and the ones mentioned above is the
way primitives and constraints are represented inside the
system. Our approach uses a single type of landmark, and
a single type for the measurement, whereas other approaches
rely on specific representations for each primitive and error
function.

The uniform representation allows for a very compact
implementation of a general system. As expected, using the
additional information from high-dimension landmarks and
heterogeneous constraints has a positive effect on the con-
vergence properties of the back-end. We support our claims
with synthetic and raw-data experiments. Fig. 1 shows the
reconstruction and the relative optimized graph obtained from
real data. Finally, we provide an open source C++ plugin2 for
g2o that implements our back-end approach.

II. RELATED WORK

SLAM is a well-known problem and many approaches have
been proposed through the years [16] [17]. Early probabilistic
solutions were based on filtering, mainly relying on Gaus-
sian Filters (EKF and UKF and Information Filters) [18] or
Particle Filters [19] [20]. Gaussian Filters have been reported
to suffer from accuracy issues arising from the inherent
linearizations [21]. Particle filters, in contrast, do not scale
to large environments since the number of particles required
might grow exponentially with the trajectory length. Currently,
the community has converged towards Maximum-A-Posteriori
(MAP) based approaches that leverage on the sparsity of the
problem to achieve efficient computation. The graph-based
formulation of the SLAM problem has been proposed by Lu
and Milios [22]. They build a pose-graph from laser scans and
odometry data, performing the batch graph optimization via
least-squares. Subsequently, to overcome the computational
limitations of the batch solution, Gutmann and Konolige [23]
proposed a Local Registration and Global Correlation method
(LRGC). The graph was incrementally built, and the optimiza-
tion was performed when cycles were detected.

2Source available at: https://srrg.gitlab.io/sashago.html

Least-squares based approaches, however, were suffering
from computational issues due to the lack of efficient solvers
for sparse linear algebra. To tackle these problems, the
community proposed optimization systems based on Re-
laxation [24] [25] [26] and Stochastic Gradient Descent
(SGD) [2] [27]. The first formalism is based on the concept
of relaxing some optimization constraints. This leads to lower
computational complexity, weighted by a slower convergence
rate [28]. On the other hand, SGD approaches provide a
decomposition of the standard gradient descent problem in
many smaller problems. Thus, the optimization is performed
considering the constraints individually.

All these works were still not considering the intrinsic spar-
sity of the problem. Dellaert et al. developed a system called√

SAM [29] that was based on least-squares and exploited
the sparsity to efficiently compute a solution.

√
SAM was

further expanded adding incremental optimization and new
more efficient data-structures, respectively in iSAM [30]
and iSAM2 [31]. Concurrently, Kümmerle et al. developed
g2o [32], a tool to easily optimize generic graphs.

Whereas these systems have been designed as general factor
graph optimization systems, the default factors supported
assumed to operate on landmarks represented as points. These
are generally employed since they are easy to detect and
describe. Still, they do not provide information about the
world structure. Moreover, in certain conditions the number
of points detected could be insufficient - e.g. a robot navi-
gating in a textureless environment. To add compactness and
descriptiveness to the world reconstruction, many approaches
embed other geometric primitives. Intuitively, line segments
were firstly investigated [33] [34] since they were relatively
easy to compute using different sensors [35] [36]. In particular,
the work of Castellanos et al. [33] proposes a systematic
paradigm to describe line-segments and potentially other ge-
ometric features, similarly to our approach: SPmap. For each
landmark type it is required to provide a suitable perturbation
vector and a binding matrix that will characterize its shape.
Still, SPmap is restricted to 2D environments and designed to
operate in conjunction with a Gaussian Filter. Accordingly, a
system built this way shares the shortcomings of the estimator
used. The work presented in this paper builds on SPmap
and generalizes its ideas to 3D environments and non-linear
estimators. Subsequently, Pedraza et al. investigated the use
of generic B-splines [37] to correctly describe more complex
shapes.

On the same line of thought, other researchers introduced
the plane primitive in SLAM pipelines. De la Puente et
al. [38] successfully embedded rectangles in a hierarchical
graph-based pipeline, however, their approach is limited to 2D
scenarios. Salas et al. [39] proposed a dense planar approach,
detecting bounded planes and surfels from RGB-D images.
On the contrary, Kaess [11] used infinite planes to perform
SLAM, proposing a quaternion-based plane parametrization
that improves the convergence of the optimization. The same
parametrization has also been used in monocular context [40].

In our previous work [10], we exploited these works,



providing a unified representation of heterogeneous primitives
by means of degenerate quadrics. The provided unification
allows the registration error to be computed regardless of
the specific type of primitive. This includes the possibility
to generate cross-constraints between primitives of different
types.

In this work, we exploit matchables into our back-end.
Thanks to the provided unification, the system implementation
complexity is significantly bounded and it is possible to add
cross-constraints between different primitives without specific
adaptations of the back-end.

III. POSE-LANDMARK GRAPH OPTIMIZATION

A pose-landmark graph back-end aims at finding the con-
figuration of robot poses {XR

1:NR} and landmarks {XL
1:NL}

that is maximally consistent with the measurements. Let
X = {XR

1:NR} ∪ {XL
1:NL} be the set of all variables. Each

robot pose and landmark is represented by a node in the graph.
Nodes are connected by edges 〈zk,Ωk,hk(·)〉 that encode
measurement mean z and relative information matrix Ω. We
indicate with hk(·) the observation function of the specific
edge type.

To retrieve the indices of the first and second node of
an edge from the measurement index k, we introduce the
selector functions i(k) and j(k). Let ẑk = hk(Xi(k),Xj(k))
be the prediction function for the kth measurement. In case of
Euclidean variables, the residual error between prediction and
measurement can be computed as the difference between the
two vectors:

e(Xi(k),Xj(k)) = hk(Xi(k),Xj(k))− zk. (1)

The optimal configuration X ∗ of the nodes with respect to
the measurements is the one that minimizes the cumulative
Ω-norm of the residual error

X ∗ = argmin
X

∑
k

eT
k (X ) Ωk ek(X ). (2)

This optimization problem is usually solved using iterative
approach, such as Iterative Least-Squares (ILS) or SGD. In
general, ILS methods repeatedly resolve a linear approxima-
tion of Eq. (2). Considering a non-Euclidean state space, this
is obtained expanding the error terms in Eq. (2) around the
origin of a chart computed at current initial guess X̆ :

ek(X̆ �∆x) ≈ ek(X̆ ) +
∂ek(X̆ �∆x)

∂∆x

∣∣
∆x=0

∆x

= ek + Jk∆x. (3)

In Eq. (3), the � operator applies a perturbation ∆x to the
generic manifold space X . Obviously, in the straightforward
case of Euclidean states, the � operator degenerates to the reg-
ular vector addition. ∆x should be a minimal parametrization
for the increments of all state variables. Expanding Eq. (3)
in Eq. (2) leads to the following quadratic form:

∆xT

[∑
k

JTkΩkJk

]
H

∆x + 2

[∑
k

eTkΩkJk

]
bT

∆x + const (4)

Eq. (4) can be straightforwardly minimized in ∆x by solving
the following linear system:

H∆x? = −b. (5)

The increment is applied to the current solution as follows:

X̆ ← X̆ �∆x?. (6)

In our scenario, each measurement zk depends only on two
nodes. For this reason, the Jacobian computed in Eq. (3) will
be non zero only in the blocks relative to the state variables
Xi(k) and Xj(k) connected by the edge k:

Jk =
[
0 · · · 0 Ji(k) 0 · · · 0 Jj(k) 0 · · ·

]
By construction, H =

∑
k JT

k ΩkJk. Therefore, the sparsity
will result also in the linear system described in Eq. (5).
Exploiting this sparsity is a key aspect of modern optimization
systems - e.g. g2o [32] or iSAM [30]. ILS repeats the above
procedure until convergence.

Also the measurements may lie on a manifold space. In
the remaining, we indicate with Zk a parametrization for the
kth manifold measurement. To compute the residual error in
Eq. (1) we need to define a difference operator Zb � Za =
∆zab between manifold objects, that returns an Euclidean
difference between two objects. Intuitively, if Za = Zb,
then ∆zab = 0. In Alg. 1 we reported the evolution of
the vanilla Gauss-Newton (GN) algorithm. Some scenarios
(including ours) lead to a rank deficient matrix H and, hence,
require a damping factor or a different optimization algorithm
- e.g. Levenberg-Marquardt (LM).

To specialize this problem to a specific case we need to:
– define the domain and the perturbation for each state vari-

able, along with a � operator that applies the perturbation
to the variable;

– define an error function that computes a vector difference
between prediction and measurement, for each type of
edge.

We refer the reader to [41] for further details on this topic.

A. Example: 3D Pose and 3D Point Landmark Case

One of the most common scenario involves 3D robot poses
XR and 3D point landmarks xL. In this sense, XR lies on
the SE(3) space and a possible non-minimal parametrization
is a 3D isometry. The latter is composed by a rotation matrix
R and a translation vector t. A minimal parametrization used
to describe the increment ∆xR can be a 6-dimensional vector
∆x = [∆tT ∆αT ]T = [x y z θ φ ψ]T . A landmark xL is a
3D vector that lies on the Euclidean space R3. As a result, the
� degenerates to a regular sum and the increments ∆xL live
in the same space as the landmark. Tab. I summarizes how to
apply the increment for such objects.

Analogously, measurements are of type pose-pose and pose-
landmark and, thus, we should define different error functions.
In the former case, to compute the distance between SE(3)
objects it is possible to use the matrix difference defined
in [28].



Algorithm 1 GN minimization algorithm for manifold mea-
surements and state spaces

Require: Initial guess X̆ ; Measurements Z; Threshold ε.
Ensure: Optimal solution X ?

1: Fnew ← F (X̆ ) . compute the current error
2: while F̆ − Fnew > ε do
3: F̆ ← Fnew

4: b← 0
5: H← 0
6: for Zk ∈ Z do
7: i← i(k) . extract indices
8: j ← j(k)
9: ek ← ek(Xi,Xj) . compute error vector

10: Ji(k) ←
∂ẽk(Xi�∆xi,Xj)

∂∆xi

∣∣
∆xi=0

. Jacobian i

11: Jj(k) ←
∂ẽk(Xi,Xj�∆xj)

∂∆xj

∣∣
∆xj=0

. Jacobian j
12: Jk ←

[
0 · · ·0 Ji(k) 0 · · ·0 Jj(k) 0 · · ·0

]
13: H← H + JT

k ΩkJk . contribution of Zk in H
14: b← b + JT

k Ωkek . contribution of Zk in b

15: ∆x← solve(H∆x = −b) . solve w.r.t. ∆x
16: X̆ ← X̆ �∆x . update the state
17: Fnew ← F (X̆ ) . compute the new error
18: return X̆

increment X �∆x

XR ∆xR =
[
∆tT ∆αT

]T
[R∆αR | R∆αt + ∆t]

xL ∆xL ∈ R3 xL + ∆xL

TABLE I: Minimal parametrization of increments and � operator for SE(3)
and R3 objects.

measurement type error function
pose-pose e(XR

i ,X
R
j ) = flatten(XR

i
−1

XR
j − ZRij)

pose-landmark e(XR
i ,x

L
j ) = XR

i
−1

xLj − zLij

TABLE II: Standard error functions for SE(3) and R3 measurements. The
operator flatten(·) produces a 12D vector composed by the versors and the
translation component of the isometry.

For the pose-landmark measurements, the prediction is
obtained expressing the landmark in the robot frame. Con-
sequently, the pose-landmark error is the Euclidean difference
between prediction and observation. Tab. II summarizes these
definitions.

We will apply the methodology outlined with this example
to define a pose-landmark back-end where the landmarks can
be either points, lines or planes and the measurements can
express arbitrary constraints between landmarks.

IV. OPTIMIZATION USING MATCHABLES

In this section we recall the representation of heterogeneous
primitives presented in [10], that allows a unification between
different geometric primitives - i.e. points, lines and planes.
In this formalism, the objects are referred to as matchables.
In Sec. IV-A we will report a brief overview of this repre-
sentation, while in Sec. IV-B and Sec. IV-C we show how
to embed it in standard non-linear optimization algorithm like

GN or LM, according to the scheme defined in Sec. III-A.

A. Matchable Basics
A matchable expresses a point, a line or a plane through a

degenerate quadric. As a result, a point x belonging any of
these primitives satisfies the following equation:

(x− p)TA(x− p) = 0. (7)

Since A is symmetric, the eigenvalue decomposition allows
to isolate the orientation R of the primitive and its shape Λ
as

A = RΛRT with R = [rx ry rz]. (8)

We recall that the column vectors r∗ in Eq. (8) are orthonormal
and Λ is the diagonal matrix storing the eigenvalues of A.
In the remainder of this work we will refer to rx as the
direction dM of the matchable. Intuitively, dM represents also
the symmetry axis of the matchable.

We represent a matchable M as the following tuple:

M : 〈pM, RM, ΛM〉. (9)

Here pM ∈ R3 is the centroid of the matchable, and de-
scribes its position in the space. RM ∈ SO(3) is a rotation
matrix and captures its orientation. Finally, ΛM is a 3 × 3
diagonal matrix that characterizes the matchable shape. More
specifically, a point is described as a sphere of null radius
(Λ = diag(1, 1, 1)), a line is a cylinder of null radius
(Λ = diag(0, 1, 1)) and a plane consists of two parallel planes
with null distance (Λ = diag(1, 0, 0)). Choosing a value of 1
for the non-null eigenvalues of Λ results in Eq. (7) being the
squared Euclidean distance between a point x and the closest
point in the quadric.

B. Applying a Perturbation to a Matchable
We notice that the representation presented in Eq. (9) is

clearly non-minimal and non-Euclidean, due to the presence
of R. To use matchables as landmarks in the schema proposed
in Sec. III, we need to define a locally Euclidean perturbation
∆m along a � operator that applies the perturbation to a
matchable. Still, ∆m should have enough degrees of free-
dom to move the matchable centroid pM and to change its
orientation. Not all possible changes in orientation affect a
primitive: a point has no orientation and rotating a plane along
its normal or rotating a line along its direction has no effect
on the primitive.

Albeit non-minimal, a resonably small representation of a
perturbation ∆m for a matchable is the following:

∆m =
[
∆pT ∆αT

y ∆αT
z

]T
. (10)

In this paradigm ∆m is the concatenation of a perturbation
of the centroid ∆p and two rotations ∆αy and ∆αz along
axes non parallel to the main direction of the matchable rx.
Applying a perturbation to a matchable is done as follows:

M�∆m , 〈pM + ∆p, RM ∆R, ΛM〉 (11)

where ∆R = Ry(∆αy) · Rz(∆αz) is the rotation matrix
obtained from the orientation part of the ∆m.



C. Error Function

According to the schema in Sec. III, we need to define
a way to compute the prediction of a matchable. Moreover,
we should characterize an error function that computes the
Euclidean vector describing the difference between prediction
and observation.

The prediction is obtained simply by expressing the ob-
served matchable Mj = 〈pj ,Rj ,Λj〉 in the reference frame
of the observing robot pose Xi = [Ri | ti]. Without loss of
generality, we assume that our system stores the trajectory of
the robot as “world-in-robot” transforms. Hence, the prediction
M̂ij is computed as follows:

M̂ij = h(Xi,Mj) = 〈Ripj + ti, Ri Rj , Λj〉 (12)

We need now to compute a difference vector between
prediction and observation, that are potentially different primi-
tives. Depending on the compared primitives, not all elements
of a matchable are relevant: in the case of two points, the
orientation is meaningless, or when comparing a plane and a
line the direction vectors rx should be orthogonal.

The solution lies in computing an extended difference vector
that captures all possible differences between two matchables
and then to rely on the information matrix Ω to suppress
meaningless components of the difference. To this extent,
considering two matchables Ma and Mb where Mb represents
a primitive of dimension equal or higher the one of Ma, the
7D difference vector between the two is computed as follows:

e(Ma,Mb) ,

ep

ed

eo

 =

RT
b (pa − pb)
da − db

dT
a db

 (13)

In Eq. (13)
• ep ∈ R3 describes the euclidean distance between the

two matchables origins.
• if both Ma and Mb have a direction, ed ∈ R3 de-

scribes the misalignment between the two. The reader
might notice that, since the distance is computed locally,
singularities are avoided.

• eo ∈ R describes whether da ⊥ db. This component is
enforced in cases of line lying on a plane and viceversa.

The information matrix Ω will shape the error, enabling and
disabling components of Eq. (13) depending on the types of
the considered matchables. Hence, considering measurement
Zk = Zij connecting node i and j, characterized by Additive
White Gaussian Noise (AWGN) N (0, Ω̄−1k ) the information
matrix Ωk will be constructed as follows:

Ωk = A Ω̄k AT A =

 Ap 03×3 03×1
03×3 Ad 03×1
01×3 01×3 Ao

 (14)

In Eq. (14), A represents the ”activation matrix” used to dis-
card non-relevant components of the residual error in Eq. (13).
Tab. III reports the composition of A, depending on the
possible matchable combinations. As a result, the final Ωk

will properly scale the residual error by the AWGN statistics.
We refer to the reader to [10] for further details on this topic.

Zij
point line plane

Ẑ
ij

po
in

t Ap = I
Ad = 0
Ao = 0

Ap = ΛZij

Ad = 0
Ao = 0

Ap = ΛZij

Ad = 0
Ωo = 0

lin
e −

Ap = ΛZij

Ad = I
Ao = 0

Ap = ΛZij

Ad = 0
Ao = 1

pl
an

e

− −
Ap = ΛZij

Ad = I
Ao = 0

TABLE III: Characterization of activation matrix A for each possible com-
binations of matchables. We indicate with Ẑij and Zij respectively the
predicted and the actual measurement. In this work we cover only cases
when a primitive can be observed through a measurement of lower or equal
dimension.

We now have all elements to specialize Alg. 1 to operate on
a map whose landmarks are matchables and whose observa-
tions are arbitrary constraints between heterogeneous match-
ables. Denoting with Zij the observation, the contribution of
this edge to the cost function Eq. (2) is computed as

eij(Xi,Mj) = ‖e(XiMj ,Zij)‖Ωij
. (15)

Finally, the complete derivation of Jacobians Ji and Jj

is described in the supplementary materials3. However, since
our parametrization is redundant for low informative objects
like points, the information matrix H may be rank deficient
in some scenarios. This means that, in some cases, it is
not possible to use a first order optimization algorithm like
Gauss-Newton. We overcome this issue using the Levenberg-
Marquardt algorithm, that guarantees full rank of matrix H.

In Eq. (13) we defined the error vector considering Mb as
a primitive of dimension higher or equal to the one of Ma.
These cases correspond to the upper triangular part of Tab. III
and are the ones typically observed in SLAM. In the unlikely
case that a landmark of lower dimension is observed through
a higher dimension primitive4, Eq. (13) is still valid, but the
two primitives have to be flipped. Doing so, however, results
in the R matrix of the predicted landmark to be dependant on
the robot position, and the straightforward derivation of the
Jacobians presented in the supplementary material does not
hold. In this work we do not cover these cases.

V. EXPERIMENTAL EVALUATION

In this section, we provide experiments aimed to support the
claims of larger convergence basin and improved robustness
compared to point-only approaches. In particular, we report
in Sec. V-A the results of the convergence analysis conducted
on synthetically generated data. Sec. V-B reports a brief
overview of the front-end used to generate graphs from stan-
dard RGB-D datasets. Moreover, we analyze the robustness of
our approach evaluating the error on the optimized trajectories.

3The supplementary materials are attached to the RA-L version of the
manuscript.

4An example of this situation might be a robot equipped with a large planar
bumper allowed to slide only along the plane’s normal hitting the edge of an
object.



Fig. 2: Example of a synthetic randomly generated world containing points
(purple), planes (cyan) and lines (yellow).

A. Synthetic Data

The aim of this set of experiments is to evaluate the effect
of our back-end that can operate on higher order landmarks
under different sensor noise and initial guess conditions.
To generate the synthetic datasets we used an extension of
g2o_simulator included in the g2o package to generate a
synthetic world consisting of points, planes and lines. Fig. 2
illustrates a simulated scenario example.

The robot moves on a Manhattan-like trajectory along this
maze, and senses the matchables. The measurement of a
matchable can be of two types: homogeneous or not. As
an example, the former occurs when a plane is sensed as a
plane by the robot, while the latter occurs when a plane is
sensed either as a line or as a point. In our experiments we
isolate the effects of both homogeneous and non-homogeneous
measurements.

On this synthetic world, we moved the robot on different
trajectories of increasing length (g0, g1 and g2). For each
trajectory, we simulated the sensing of the matchables, and
we distinguish the following four cases:
• all: a matchable in the map is sensed through all sensing

modalities (homogeneous and not)
• hom: a matchable in the map generates a measure of the

same type (point-point, line-line, plane-plane).
• non-hom: a matchable in the map generates a non

homogeneous measurement.
• point: only the point matchables are considered.

Tab. IV reports the number of nodes and edges for each graph
and sensing modality.

The non-hom datasets take into account only lower di-
mensional constraints generated from a matchable landmark -
e.g. a point is never sensed as a plane. For this reason the
number of variables of non-hom dataset is smaller, since
point landmarks are not considered.

To analyze the effects under varying noise conditions, we
applied to each scenario different noise figures - both on the
odometry measurements and on the matchable measurements.
The pose noise is sampled from N p

t (0,Σp
t ) and N p

r (0,Σp
r)

respectively for the translational and rotational pose com-
ponents. The landmark noise, analogously, is sampled from

dataset pose nodes total nodes total edges
g0-all
g0-hom

g0-non-hom
g0-point

100

246
246
161
151

1797
1245
653
554

g1-all
g1-hom

g1-non-hom
g1-point

1000

2338
2338
1644
1439

32426
21756
11671
8238

g2-all
g2-hom

g2-non-hom
g2-point

10000

18163
18163
13191
13632

198945
143868
65078
72613

TABLE IV: Synthetic dataset specifications. Graphs are collected according
to the number of robot poses

low-noise mid-noise high-noise
Σt [0.01 0.01 0.001] [0.1 0.1 0.01] [1.0 1.0 0.01]
ΣR [0.001 0.001 0.005] [0.01 0.01 0.05] [0.01 0.01 0.1]
Σp [0.005 0.005 0.005] [0.05 0.05 0.05] [0.5 0.5 0.5]
Σd [0.001 0.001] [0.01 0.01] [0.1 0.1]

TABLE V: In this table we provide the value of noise added to the synthetic
datasets. The values of Σt and Σp are expressed in meters while ΣR and
Σd in radians.

Nm
t (0,Σm

t ) and Nm
r (0,Σm

r ). In Tab. V we summarize the
noise figures used in the experiments. To compare the chi2 of
point-only cases with our approach, we normalized them to
their chi2 at the respective global optima. For this reason all
the plots might converge to a value of chi2 = 1. Note that the
global optimum is not the ground truth due to the noise in the
measurements. To compute this optimum we execute LM until
convergence, starting from the ground truth configuration.

In Fig. 3 we report the chi2 comparison of point-only
and matchable based landmark obtained on the 100 poses
datasets, using high-noise settings. Intuitively, when the graph
dimension is relatively small there is no difference in terms of
convergence speed. However, increasing the graph dimension
leads to different results, showing the limits of point-based
landmarks. The initial guess used in all the system is the
spanning tree. In Fig. 4 we reported the chi2 comparison in
the graphs with 1000 poses in high noise configuration. In
all cases, our approach succeeds in reaching the optimum,
while standard point based optimization remains stuck in
suboptimal configurations. In bigger graph - i.e. 10000 poses
- and under extreme noise conditions both approaches fail
the optimization, due to nature of the problem. However, as
shown in Fig. 5, point based optimization fails with every noise
configuration, while our approach produces better results - that
can be used as initial guess for further optimization.

B. Raw Data

Albeit this work focuses on the back-end, we conducted a
set of experiments to validate the usability of such a back-end
on graphs generated from real data. To this end, we developed
a simplistic front-end for RGB-D data. More in detail, we
extended [10] by adding to the front-end the option to “export”
the graph. Additionally, we implemented a straighforward loop
detection on top of the recent Visual Place Recognition (VPR)
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Fig. 3: Comparison between point and matchable based landmark graphs, using high-noise configurations. The dataset used are g0-all and g0-point
in Fig. 3a, g0-hom and g0-point in Fig. 3b, g0-non-hom and g0-point in Fig. 3c. Minimal mismatch in the converge speed are present when
including non homogeneous matchable edges, but they are due to the nature of the geometric constraint that we are considering - e.g. a point can slide on a
line. Those effects are due to small dimension of the graph in this case. The chi2 of both approaches are normalized to their respective global optima chi2.
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(b) Homogeneous only matchable edges compared
to point only ones.
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(c) Non-homogeneous only matchable edges com-
pared to point only ones.

Fig. 4: Comparison between point and matchable based landmark graphs, using high-noise configurations. The dataset used are g1-all and g1-point
in Fig. 4a, g1-hom and g1-point in Fig. 4b, g1-non-hom and g1-point in Fig. 4c. In this case it is clear how using matchables increases the
convergence basin, reaching the optimum in all cases. The chi2 of both approaches are normalized to their respective global optima chi2.
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(a) High noise configuration.
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(b) Mid noise configuration.
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Fig. 5: Comparison between point and matchable based landmark graphs. All plots refer to the datasets g2-all and g2-point. The illustrations reports
different noise figures, respectively from left to right: high, mid and low noise configuration. The reader might notice how point only graph always fails in
finding the optimal solution. The chi2 of both approaches are normalized to their respective global optima chi2.

lr0 lr1 lr2 lr3 tr0 tr1 tr2 tr3
SA-SHA 0.081070 0.012452 0.018664 0.094783 0.027381 0.019387 0.019523 0.028203
SA-SHAGO 0.031051 0.008600 0.014552 0.068380 0.017060 0.076373 0.013735 0.010791
ProSLAM 0.004481 0.007028 0.011581 0.028300 0.168866 0.065404 0.032352 0.045774
ORB-SLAM 2 0.007354 0.173665 0.019236 0.010037 0.028518 0.041650 0.012535 0.136025

TABLE VI: Absolute trajectory RMSE [m] comparison on the ICL-NUIM dataset.

library HBST [42]. With this simple setup, we build a graph
through the front-end. Once the processing of the raw data
is terminated, we evaluate offline the trajectory error before
and after the global optimization. The former is referred to as

SA-SHA, as in [10]. The optimized version proposed in this
paper is labeled as SA-SHAGO.

In the remainder of this section, we report the results
obtained by processing raw sensor data. The aim of this



paper is to present a new back-end that can process higher
dimension landmarks, and not proposing a full SLAM system.
Nonetheless, we report the result of two state-of-the-art sys-
tems, namely ProSLAM [5] and ORB-SLAM2 [3], to provide
the reader with a baseline.

We conducted the experiments on the ICL-NUIM
dataset [43], a photorealistic indoor RGB-D dataset. In Tab. VI
we provide the results obtained evaluating the absolute trajec-
tory RMSE - in meters - on the generated trajectory before
and after the optimization. The gain in terms of accuracy
is evident in almost all the datasets, but the sequence tr1.
In this case, the non optimized trajectory presents already a
reasonable accuracy, and the worsening in the absolute error
is due to the insertion of wrong closures in the graph.

VI. CONCLUSIONS

In this work, we extended the pose-landmark optimization
problem using different geometric primitives as landmarks -
e.g. points, lines and planes. All these primitives are formal-
ized with a unified representation based on the concept of
degenerate quadrics, called matchable. Thanks to this unified
representation, we can exploit the greater convergence proper-
ties of more descriptive primitives while preserving a concise
implementation. Furthermore, this allows to model different
observation of the same matchable landmark - e.g. observe a
plane as a line. We support our claims of improved converged
properties compared to standard point-based graph optimiza-
tion. To this end we conducted quantitative experiments where
we systematically analyze the effects of each class of con-
straint under varying conditions. We show the applicability of
our approach in realistic scenarios by evaluating a full SLAM
pipeline for RGB-D data, built on top of our back-end. Despite
the front-end of the pipeline is rather simplistic, the greater
descriptiveness of more complex geometric primitives yelds to
results comparable with other state-of-the-art SLAM systems.
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