In this paper, we present a novel solution for real-time, Non-Linear Model Predictive Control (NMPC) exploiting a time-mesh refinement strategy. The proposed controller formulates the Optimal Control Problem (OCP) in terms of flat outputs over an adaptive lattice. In common approximated OCP solutions, the number of discretization points composing the lattice represents a critical upper bound for real-time applications. The proposed NMPC-based technique refines the initially uniform time horizon by adding time steps with a sampling criterion that aims to reduce the discretization error. This enables a higher accuracy in the initial part of the receding horizon, which is more relevant to NMPC, while keeping bounded the number of discretization points. By combining this feature with an efficient Least Square formulation, our solver is also extremely time-efficient, generating trajectories of multiple seconds within only a few milliseconds. The performance of the proposed approach has been validated in a high fidelity simulation environment, by using an UAV platform. We also released our implementation as open source C++ code.

Non-linear model predictive control with adaptive time-mesh refinement / Potena, Ciro; DELLA CORTE, Bartolomeo; Nardi, Daniele; Grisetti, Giorgio; Pretto, Alberto. - STAMPA. - (2018), pp. 74-80. (Intervento presentato al convegno 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2018 tenutosi a Brisbane, QLD, Australia) [10.1109/SIMPAR.2018.8376274].

Non-linear model predictive control with adaptive time-mesh refinement

Potena ciro
;
Della Corte Bartolomeo;Nardi Daniele;Grisetti Giorgio;Pretto Alberto
2018

Abstract

In this paper, we present a novel solution for real-time, Non-Linear Model Predictive Control (NMPC) exploiting a time-mesh refinement strategy. The proposed controller formulates the Optimal Control Problem (OCP) in terms of flat outputs over an adaptive lattice. In common approximated OCP solutions, the number of discretization points composing the lattice represents a critical upper bound for real-time applications. The proposed NMPC-based technique refines the initially uniform time horizon by adding time steps with a sampling criterion that aims to reduce the discretization error. This enables a higher accuracy in the initial part of the receding horizon, which is more relevant to NMPC, while keeping bounded the number of discretization points. By combining this feature with an efficient Least Square formulation, our solver is also extremely time-efficient, generating trajectories of multiple seconds within only a few milliseconds. The performance of the proposed approach has been validated in a high fidelity simulation environment, by using an UAV platform. We also released our implementation as open source C++ code.
2018
2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2018
Artificial Intelligence; Software; Control and Optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Non-linear model predictive control with adaptive time-mesh refinement / Potena, Ciro; DELLA CORTE, Bartolomeo; Nardi, Daniele; Grisetti, Giorgio; Pretto, Alberto. - STAMPA. - (2018), pp. 74-80. (Intervento presentato al convegno 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2018 tenutosi a Brisbane, QLD, Australia) [10.1109/SIMPAR.2018.8376274].
File allegati a questo prodotto
File Dimensione Formato  
Potena_Non-linear-model_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Contatta l'autore
SIMPAR-Frontespizio_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 51.98 kB
Formato Adobe PDF
51.98 kB Adobe PDF   Contatta l'autore
SIMPAR-Indice_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 69.17 kB
Formato Adobe PDF
69.17 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1132083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact