We consider the feedback control problem for a wheeled mobile robot with the kinematics of a unicycle, a typical example of nonholonomic robotic system. It is shown that dynamic feedback linearization can be used to design a simple control law which is valid for trajectory tracking as well as point stabilization tasks. In particular, for both cases exponential convergence with linear transients in the cartesian space is obtained. Experimental results for a laboratory prototype prove the effectiveness of the proposed method
Stabilization of the unicycle via dynamic feedback linearization / DE LUCA, Alessandro; Oriolo, Giuseppe; Vendittelli, Marilena. - (2000), pp. 397-402. (Intervento presentato al convegno 6th IFAC Symposium on Robot Control (SYROCO 2000) tenutosi a Vienna, Austria nel Sep 2000).
Stabilization of the unicycle via dynamic feedback linearization
DE LUCA, Alessandro
;ORIOLO, Giuseppe;VENDITTELLI, Marilena
2000
Abstract
We consider the feedback control problem for a wheeled mobile robot with the kinematics of a unicycle, a typical example of nonholonomic robotic system. It is shown that dynamic feedback linearization can be used to design a simple control law which is valid for trajectory tracking as well as point stabilization tasks. In particular, for both cases exponential convergence with linear transients in the cartesian space is obtained. Experimental results for a laboratory prototype prove the effectiveness of the proposed methodFile | Dimensione | Formato | |
---|---|---|---|
DeLuca_preprintStabilization_2000.pdf
accesso aperto
Note: https://www.sciencedirect.com/science/article/pii/S1474667017380114
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
124.7 kB
Formato
Adobe PDF
|
124.7 kB | Adobe PDF | |
DeLuca_Stabilization_2000.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.