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Abstract: We consider the feedback control problem for a wheeled mobile robot with
the kinematics of a unicycle, a typical example of nonholonomic robotic system. It is
shown that dynamic feedback linearization can be used to design a simple control law
which is valid for trajectory tracking as well as point stabilization tasks. In particular,
for both cases exponential convergence with linear transients in the cartesian space is
obtained. Experimental results for a laboratory prototype prove the effectiveness of

the proposed method.
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1. INTRODUCTION

The control problem for robotic systems with
nonholonomic constraints, such as wheeled mo-
bile robots, free-floating space manipulators or
multifingered robot hands, raises a particularly
challenging theoretical issue. For these systems,
feedback stabilization at a given equilibrium point
(also called set-point regulation) turns out to be
a difficult problem, since the tangent linearization
of the system is uncontrollable and, in addition,
smooth time-invariant stabilization is not possi-
ble (Brockett, 1983).

Set-point regulation has been tackled resorting
to innovative control strategies, i.e., discontinu-
ous (Canudas de Wit and Sgrdalen, 1992), time-
varying (Samson, 1995) and mixed (Sgrdalen and
Egeland, 1995) feedback laws; see (De Luca et
al., 1998) for a complete bibliography. While these
approaches overcome in principle the aforemen-
tioned difficulties, it should be acknowledged that
their application brings along at least two practi-
cal drawbacks:

e System trajectories are almost invariably
oscillatory and erratic, resulting in unpre-
dictable motions. This may be a severe lim-
itation, particularly for mobile robots in en-
vironments with obstacles.

e Control laws for set-point regulation are com-
pletely different from those used for tra-
jectory tracking, which may be instead ob-
tained by smooth feedback. Thus, the control
module must implement different operation
modes for each task, with additional com-
plexity in the software architecture.

Our objective in this paper is to design a con-
trol scheme which is effective (in the sense that
generates fast, predictable transients) for both tra-
jectory tracking and set-point regulation tasks.
For fully actuated robotic system without non-
holonomic constraints, this goal can be achieved
by the celebrated computed torque method, i.e.,
exact linearization via static feedback. For non-
holonomic systems, we propose to adopt an ex-
tension of the same approach, namely exact lin-
earization via dynamic feedback. This tool has



been already used by d’Andrea-Novel et al. (1992)
and by De Luca and Di Benedetto (1993) for
trajectory tracking. Here, we show that it can be
successfully exploited also for solving the set-point
regulation problem. For illustration, the design
procedure is carried out in full detail on a wheeled
mobile robot with the kinematics of a unicycle.

Experimental results are presented for the mobile
robot SuperMARIO.

2. CONTROL VIA DYNAMIC FEEDBACK
LINEARIZATION

Consider a nonlinear system
q=f(g) +9(qw (1)

where g is the n-dimensional state and w is the m-
dimensional input. For driftless robotic systems,
typically arising with first-order kinematic mod-
els, it is f(g) = 0 and the state is given by the
generalized coordinates.

The dynamic feedback linearization problem con-
sists in finding, if possible, a dynamic state feed-
back compensator of the form

£ = a(q,€) +b(g, &)u
w = clg,€) +d(g, ). @)

with r-dimensional state ¢ and m-dimensional
new input u, such that the closed-loop system
(1-2) is equivalent, under a state transformation
z=T(q,§), to a linear controllable system.

Only sufficient or necessary conditions exist for
the solution of the dynamic feedback linearization
problem. Constructive algorithms, which are es-
sentially based on input-output decoupling, can
be found in (Isidori, 1995). For these, an m-
dimensional system output n = h(g) needs to
be defined, to which a desired behavior can be
assigned (e.g., track a given trajectory). One pro-
ceeds by successively differentiating the output
until the input appears in a nonsingular way. At
some stage, the addition of integrators on a subset
of the input channels may be necessary in order
to avoid subsequent differentiation of the original
inputs. This dynamic extension builds up the state
¢ of the dynamic compensator (2). The algorithm
terminates after a finite number of differentiations
whenever the system is invertible from the chosen
output. If the sum of the output differentiation
orders equals the dimension n + v of the extended
state space, full input-state-output linearization
is also obtained. The closed-loop system is then
equivalent to a set of decoupled input-output
chains of integrators from u; ton; (i =1,...,m).

For first-order m-dimensional kinematic models
of nonholonomic robots, the following facts have
been established (De Luca et al., 1998):

e It is never possible to achieve exact lineariza-
tion via static state feedback.

e A robot with m = 2 inputs admitting a
chained form representation (Sgrdalen and
Egeland, 1995) can always be exactly lin-
earized via a dynamic feedback of dimension
v = n — 2. The resulting system consists of
two decoupled chains of n — 1 integrators.

2.1 Application to the unicycle

Let ¢ = (z,y,9) be the generalized coordinates of
a unicycle, where (z,y) is the cartesian position
of the unicycle in a world frame and ¥ is its orien-
tation with respect to the z axis. The kinematic
model of the system is

T =wv cosV
y=wv sin? (3)
J=w,

where v and w are respectively the driving and
steering velocity inputs (n = 3 and m = 2).

By taking nn = (z,y) as the system output, the dy-
namic linearization algorithm yields a controller of
the form (De Luca et al., 1998)

& =wuy cos + up sin? (4)
v=¢§ (5)
w:_ul sinﬁg—ug cosz9, (6)

being £ the state of the one-dimensional dynamic
compensator (v = 1). In the new coordinates

z1=2x (7)
2=y (8)
23 =@ = Ecosd (9)
z4 =9y = &sind, (10)

the extended system is fully described by two
chains of two input-output integrators:

:2;1 =Uu1 (11)
.2:2 = U3. (12)

The linearizing control (4-6) law has a singularity
at & = v =0, i.e., when the unicycle is not rolling.
The occurrence of such singularity in the dynamic
extension process is structural for nonholonomic
systems (De Luca and Di Benedetto, 1993). This
difficulty must be obviously taken into account
when designing control laws for the equivalent
linear model (11-12).



2.2 Trajectory tracking

Assume the robot is to follow a smooth desired
output trajectory (x4(t), ya(t)) which is persistent,
i.e., such that the square of the nominal control
input Uﬁ = ¢§+y§ along the trajectory never goes
to zero.

On the linear and decoupled system (11-12), it
is straightforward to design a globally exponen-
tially stabilizing feedback to the desired trajectory
(with linear cartesian transients) as

Uy = Iq + kp1 (xg — x) + ka1 (&4 — @)
ug = ija + kp2(Ya — y) + ka2 (9a — 9),
with kp; > 0, kg; > 0, for i =1, 2.

Even for smooth persistent trajectories, problems
may arise if the actual command v = £ crosses zero
during an initial transient. However, this situation
can be avoided by suitably choosing the initial
state £ of the dynamic compensator. For exam-
ple, a simple way to keep the actual commands
bounded is to reset the state & whenever its value
falls below a given threshold. This strategy results
in an input command v with isolated discontinu-
ities with respect to time.

2.3 Set-point regulation

It is now shown that dynamic feedback lineariza-
tion provides a solution also for the set-point reg-
ulation problem. Assume w.l.o.g. that the desired
configuration ¢? is the origin of the configuration
space @ = IR? x SO(1). We denote by

Q*={qe Q: (x=0,cos¥ >0) OR
(y =0,cosd = —1)}
a subset of Q which will require special attention.

The remaining part Q/Q* of the configuration
space can be partitioned in two regions:

Q" ={qeQ/Q": x>0}
Q'={qeQ/Q*:x<0}.
Proposition 1. Consider the unicycle system (3)

under the dynamic controller (4-6). A PD control
law on the cartesian error

Up = —Rp1@ — kdli (13)
uz = —kpoy — kaz2y (14)
yields exponential convergence to the origin from

any initial configuration gy = (xo, yo, %) € Q/Q*,
if the following assumptions hold:

Al. The control gains kp; > 0, kq; > 0 (1 = 1,2)
satisfy the conditions

k3 — dkpy = kip — 4kpe >0 (15)

kao — ka1 > 2\/]{332 — 4kp2. (16)

A2. The initial state of the dynamic compensator
is chosen as

& < 0 (backward motion) if go € Q"

if qo € Qlu
but its value is otherwise arbitrary, except for
the additional condition

507"52]€

& > 0 (forward motion)

p120 sin ¥y — kpayo cos g

17
ka2 — ka1 (17)

Proof. Use of control (13-14) in eqgs. (11-12)
imposes that the cartesian coordinates x and y
converge to zero exponentially, provided that the
original control inputs v and w, given by eqgs. (5)
and (6), remain bounded. To show this, we must
prove that (i) £ does not go to zero in finite time,
and () w tends to zero for ¢ — oo, in spite of its
denominator £ vanishing.

(i) Since &2 = 23 + 27 from eqs. (9-10), one has
() = 01iff 23(() = 24(¢f) = 0. Integrating the
closed-loop system (11-12) under controls (13-14)
from ty = 0, we have

z3 (t) = a31€>\11t + a326)\12t (18)

z4 (t) = a41€>\21t + a426)\22t, (19)

where coefficients ay; and eigenvalues \;; are
easily obtained as functions of initial state and PD
gains. From these expressions and condition (15),
it is possible to show that a finite £ > 0 such that
E(t) = 0 exists iff

§o cos Vg — ToA11 o

&o cos g — TpA12

§osindg — yoA21
Eosing — Yoo’

with o = )\11A22/A12)\21. From thiS, a quadratic
equation in &y is derived which has the single
nonzero root

Co= A1120 sin Yo+ A22y0 cos 190—(1()\1210 sin Yo+ A21yo cos 190)
~0= (1—a) sin¥g cos Vg .

Once rewritten in terms of the PD gains, this
expression leads to condition (17).

(#) First of all, it is straightforward to prove that
assumption Al implies that the eigenvalues are
real and ordered as A1 < A2 < Ao1 < A9 < 0.
Rewriting eq. (6) as

—2Z4U1 + 23U2

= @ ,

and using egs. (18-19) and (13-14), the numerator
of w takes the form



(A114A21)t (A124+A21)t +

—Z4Uu1 + Z3Ug = Y1€ + Y9e

A11+A22)t A2+A22)t
’736( 11+A22) +’Y4€( 12+A22) ,

with v; € IR. Its asymptotic rate of convergence is
certainly larger than 2|\a2| due to the eigenvalue
ordering. As for the denominator, squaring and
adding egs. (18) and (19) gives

52 — nlez)\llt + 7726()\11+)\12)t _|_ 77362A12t +

n4e2>\21t 4 7756()\21"1—)\22)75 + 776€2>\22t,

with n; € IR. Since the asymptotic rate of con-
vergence of this quantity is exactly 2|A\aa|, we
conclude that w tends to zero as t — oo.

To finish the proof, it is necessary to show that
also the orientation ¢ converges to zero. This is
easily understood from the following facts:

e The unicycle reaches the origin with a hor-
izontal tangent (¢ = 0 or ), because y
approaches zero faster than x in view of the
eigenvalue ordering.

e Motion inversions do not occur since v = &
never crosses zero, as shown in the first part
of the proof.

e The trajectory is confined to the region (ei-
ther Q, or Q;) from which the unicycle
starts. In fact, x and y never change sign
because the eigenvalues are real and thanks
to the choice of sign for &y in assumption A2.

Finally, also the convergence of 9 to zero is ex-
ponential. Indeed, since w goes exponentially to
zero, the same is true for its integral 9. "

A few remarks are in order.

e As the cartesian position transients are
linear, the unicycle trajectories obtained
with the proposed controller are highly pre-
dictable and can be easily shaped by choosing
the PD control gains.

e The equality part of condition (15) in Propo-
sition 1 is by no means necessary, but is
used only for deriving a closed form for the
forbidden initialization (17) of the dynamic
compensator.

e In view of the discontinuity at the origin of
the linearizing controller with respect to the
state (z,y,9,£) of the extended system, as
well as of the fact that the initial configu-
ration should belong to Q/Q*, the proposed
feedback controller does not yield Lyapunov
stability in a strict sense, but simply expo-
nential convergence.

If the initial configuration ¢qg belongs to QF,
Prop. 1 cannot be applied. In fact, the PD con-
trol (13-14) would bring the unicycle to the origin
with the wrong orientation (¥ = = if costy > 0,
¥ = £7/2 if costy = 0, ¥ = —7 if cosPy = —1).
In such situation, it is necessary to reset the com-

Fig. 1. The wheeled mobile robot SuperMARIO

pensator state at some time ¢,, > 0, so as to invert
the motion at a configuration ¢ € Q/Q*. A simple
way to obtain this is to introduce a via point in
the regulation procedure, as illustrated in the next
section by a parallel parking experiment.

3. EXPERIMENTAL RESULTS

Experimental validation of the proposed dynamic
feedback linearization strategy has been per-
formed on the mobile robot SuperMARIO avail-
able at the Robotics Laboratory of our depart-
ment and shown in Fig. 1. The chassis is made
of aluminum and measures 46x32 cm, while the
total weight of the robot is about 8 kg. Super-
MARIO is equipped with two actuated wheels
(of radius of 9.93 cm) on the same axle (of
length 29 cm), independently driven by two DC
servomotors, and a castor wheel. The kinematic
model of the vehicle is equivalent to the unicy-
cle model (3). On-board electronics includes two
encoders mounted on the driving wheels, two PID
low-level wheel velocity loops, and two serial cards
allowing communication with a remote control
computer (a 300 MHz Pentium II) at the maxi-
mum speed of 4800 bit/s via a radio-link.

The sampling period used in the experiments is
50 ms. Custom algorithms have been developed
to reduce the effect of quantization errors and
communication delays in the reconstruction of the
state from the odometric information provided by
the encoders. A calibration procedure has also
been performed to estimate the actual wheel radii
and axle length. The system shows however the



typical limitations of a low-cost prototype, and
is prone to a variety of errors due to mechanical
friction, gear backlash, wheel slippage and other
non-idealities.

Both trajectory tracking and set-point regulation
tasks have been executed, but we report only on
the latter for which we have chosen the gains
kpl = 2, kdl = 3, kpg = 12, and kdg = 7, thus
satisfying assumption Al.

The first experiment is a typical forward parking:
the initial configuration is (—1,1,0) (m,m,rad)
while the goal is the origin. Figure 2 shows the
cartesian motion of the robot, with the expected
linear transient. To prevent wheel slippage, the
velocity inputs v and w are not allowed to exceed
in modulus the maximum values vyax = 0.5 (m/s)
and wmax = 0.3 (rad/s). The effect of this software
saturation can be seen in Figs. 3—4.

A parallel parking maneuver is the assigned task
in the second experiment. The robot starts at
(0,1.2,0) (m,m,rad) and the goal is again the
origin. As mentioned at the end of the previous
section, the reset of the dynamic compensator £ is
required in this situation. In fact, the PD control
law (13-14) as such would bring the unicycle to
the origin with the wrong orientation ¥ = m. The
problem is easily solved with the introduction of
the via point ¢, = (—0.6,—1,0) to which the
robot converges in the first phase of the regulation
task, under the action of a PD control designed
with the ¢, as the (intermediate) goal. The state
¢ of the dynamic compensator is reset as soon
as the position error with respect to the via
point falls below a given threshold. At this time,
the control law (13-14) kicks in and the robot
converges exponentially to the origin with the
correct orientation. Both the via point selection
and the reset procedure have been automatized
through a simple preprocessing step.

Figure 5 shows the cartesian motion of the robot.
To account for actuator dynamics, a simple first-
order linear filter has been introduced so as to
avoid the discontinuity in the driving velocity
generated by the reset procedure. A similar fil-
tering plus saturation procedure has been used
to neutralize the effect of the singularity in the
steering velocity due to the zero crossing of the
filtered driving velocity. Figures 67 show the pro-
files of the obtained driving and steering velocity,
respectively. Note also that, as a consequence of
the filtering, the actual velocity inputs are zero at
to = 0 even if we have chosen |{p| = vmax-

4. CONCLUSIONS

We have considered the feedback control problem
for a nonholonomic wheeled vehicle with the kine-

matics of a unicycle. It has been shown that exact
linearization via dynamic feedback can be used
to solve not only trajectory tracking but also set-
point regulation problems.

The main advantages of the presented approach
are that (%) linear cartesian transients with expo-
nential rate of convergence are obtained, and (%)
the same, very simple control law works in both
cases. The effectiveness of our control strategy has
been shown by experimental results for a labora-
tory prototype.

Among the directions of further research, we cite
the extension of the proposed regulation technique
to other nonholonomic vehicles such as the car-
like robot, with or without trailers. In fact, as
shown in (De Luca et al., 1998), dynamic feedback
linearization is always possible for these systems.
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