We address the problem of humanoid locomotion in 3D environments consisting of planar regions with arbitrary inclination and elevation, such as staircases, ramps, and multi-floor layouts. The proposed framework combines an offline randomized footstep planner with an online control pipeline that includes a model predictive controller for gait generation and a whole-body controller for computing robot torque commands. The planner efficiently explores the environment and returns the highest-quality plan it can find within a user-specified time budget, while the control layer ensures dynamic balance and adequate ground friction. The complete framework was evaluated via dynamic simulation in MuJoCo, placing the JVRC1 humanoid in four scenarios of varying complexity.

Humanoid motion generation in complex 3D environments / Marussi, D.; Cipriano, M.; Scianca, N.; Lanari, L.; Oriolo, G.. - In: ROBOTICS. - ISSN 2218-6581. - 14:6(2025), pp. 1-20. [10.3390/robotics14060082]

Humanoid motion generation in complex 3D environments

Marussi D.;Cipriano M.;Scianca N.;Lanari L.;Oriolo G.
2025

Abstract

We address the problem of humanoid locomotion in 3D environments consisting of planar regions with arbitrary inclination and elevation, such as staircases, ramps, and multi-floor layouts. The proposed framework combines an offline randomized footstep planner with an online control pipeline that includes a model predictive controller for gait generation and a whole-body controller for computing robot torque commands. The planner efficiently explores the environment and returns the highest-quality plan it can find within a user-specified time budget, while the control layer ensures dynamic balance and adequate ground friction. The complete framework was evaluated via dynamic simulation in MuJoCo, placing the JVRC1 humanoid in four scenarios of varying complexity.
2025
humanoid; planning; model predictive control
01 Pubblicazione su rivista::01a Articolo in rivista
Humanoid motion generation in complex 3D environments / Marussi, D.; Cipriano, M.; Scianca, N.; Lanari, L.; Oriolo, G.. - In: ROBOTICS. - ISSN 2218-6581. - 14:6(2025), pp. 1-20. [10.3390/robotics14060082]
File allegati a questo prodotto
File Dimensione Formato  
Marussi_Humanoid-motion-generation_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 8.68 MB
Formato Adobe PDF
8.68 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1754280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact