This paper presents a vision and perception research dataset collected in Rome, featuring RGB data, 3D point clouds, IMU, and GPS data. We introduce a new benchmark targeting visual odometry and SLAM, to advance the research in autonomous robotics and computer vision. This work complements existing datasets by simultaneously addressing several issues, such as environment diversity, motion patterns, and sensor frequency. It uses up-to-date devices and presents effective procedures to accurately calibrate the intrinsic and extrinsic of the sensors while addressing temporal synchronization. During recording, we cover multi-floor buildings, gardens, urban and highway scenarios. Combining handheld and car-based data collections, our setup can simulate any robot (quadrupeds, quadrotors, autonomous vehicles). The dataset includes an accurate 6-dof ground truth based on a novel methodology that refines the RTK-GPS estimate with LiDAR point clouds through Bundle Adjustment. All sequences divided in training and testing are accessible through our website.

VBR: A Vision Benchmark in Rome / Brizi, Leonardo; Giacomini, Emanuele; Giammarino, Luca Di; Ferrari, Simone; Salem, Omar; Rebotti, Lorenzo De; Grisetti, Giorgio. - 25:(2024), pp. 15868-15874. (Intervento presentato al convegno IEEE International Conference on Robotics and Automation (ICRA) tenutosi a Yokohama; Japan) [10.1109/icra57147.2024.10611395].

VBR: A Vision Benchmark in Rome

Brizi, Leonardo
;
Giacomini, Emanuele
;
Giammarino, Luca Di
;
Ferrari, Simone
;
Salem, Omar
;
Rebotti, Lorenzo De
;
Grisetti, Giorgio
2024

Abstract

This paper presents a vision and perception research dataset collected in Rome, featuring RGB data, 3D point clouds, IMU, and GPS data. We introduce a new benchmark targeting visual odometry and SLAM, to advance the research in autonomous robotics and computer vision. This work complements existing datasets by simultaneously addressing several issues, such as environment diversity, motion patterns, and sensor frequency. It uses up-to-date devices and presents effective procedures to accurately calibrate the intrinsic and extrinsic of the sensors while addressing temporal synchronization. During recording, we cover multi-floor buildings, gardens, urban and highway scenarios. Combining handheld and car-based data collections, our setup can simulate any robot (quadrupeds, quadrotors, autonomous vehicles). The dataset includes an accurate 6-dof ground truth based on a novel methodology that refines the RTK-GPS estimate with LiDAR point clouds through Bundle Adjustment. All sequences divided in training and testing are accessible through our website.
2024
IEEE International Conference on Robotics and Automation (ICRA)
Dataset; SLAM; Benchmark; Localization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
VBR: A Vision Benchmark in Rome / Brizi, Leonardo; Giacomini, Emanuele; Giammarino, Luca Di; Ferrari, Simone; Salem, Omar; Rebotti, Lorenzo De; Grisetti, Giorgio. - 25:(2024), pp. 15868-15874. (Intervento presentato al convegno IEEE International Conference on Robotics and Automation (ICRA) tenutosi a Yokohama; Japan) [10.1109/icra57147.2024.10611395].
File allegati a questo prodotto
File Dimensione Formato  
Brizi_VBR_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF   Contatta l'autore
Brizi_postprint_VBR_2024.pdf

accesso aperto

Note: DOI: 10.1109/ICRA57147.2024.10611395
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.88 MB
Formato Adobe PDF
8.88 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1717557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact