Using Artificial Intelligence (AI) techniques has become the best solution in many applications. By the end of Moore's Law, implementing a platform capable of such massive processing for edge-IoT applications has become a significant challenge. However, using static hardware accelerators can be an excellent solution; even so, they typically require a great deal of silicon area and are not optimized for all operation modes. Reconfigurable computing lets parts of the hardware change proportionally to the task during operation, allowing for optimized operation and the use of many hardware accelerators without requiring a large area. In this study, we present a dynamic acceleration unit exchange on a RISC-V soft-processor based on the open-source Klessydra-T13 RISC-V core. We show how reconfiguration can be used to make the hardware accelerator more flexible and improve its performance. As a case study, we show how reconfiguration techniques can be used to speed up AI architectures by reconfiguration of vector accelerator units.

Implementation of dynamic acceleration unit exchange on a RISC-V soft-processor / Jamili, Saeid; Cheikh, Abdallah; Mastrandrea, Antonio; Barbirotta, Marcello; Menichelli, Francesco; Angioli, Marco; Olivieri, Mauro. - 1036:(2023), pp. 300-306. (Intervento presentato al convegno Applications in Electronics Pervading Industry, Environment and Society tenutosi a Genoa; Italy) [10.1007/978-3-031-30333-3_40].

Implementation of dynamic acceleration unit exchange on a RISC-V soft-processor

Jamili, Saeid;Cheikh,Abdallah;Mastrandrea,Antonio;Barbirotta,Marcello;Menichelli, Francesco;Angioli, Marco;Olivieri,Mauro
2023

Abstract

Using Artificial Intelligence (AI) techniques has become the best solution in many applications. By the end of Moore's Law, implementing a platform capable of such massive processing for edge-IoT applications has become a significant challenge. However, using static hardware accelerators can be an excellent solution; even so, they typically require a great deal of silicon area and are not optimized for all operation modes. Reconfigurable computing lets parts of the hardware change proportionally to the task during operation, allowing for optimized operation and the use of many hardware accelerators without requiring a large area. In this study, we present a dynamic acceleration unit exchange on a RISC-V soft-processor based on the open-source Klessydra-T13 RISC-V core. We show how reconfiguration can be used to make the hardware accelerator more flexible and improve its performance. As a case study, we show how reconfiguration techniques can be used to speed up AI architectures by reconfiguration of vector accelerator units.
2023
Applications in Electronics Pervading Industry, Environment and Society
reconfigurable computing; dynamic function ex-change; FPGA; RISC-V soft-processor; Klessydra RISC-V
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Implementation of dynamic acceleration unit exchange on a RISC-V soft-processor / Jamili, Saeid; Cheikh, Abdallah; Mastrandrea, Antonio; Barbirotta, Marcello; Menichelli, Francesco; Angioli, Marco; Olivieri, Mauro. - 1036:(2023), pp. 300-306. (Intervento presentato al convegno Applications in Electronics Pervading Industry, Environment and Society tenutosi a Genoa; Italy) [10.1007/978-3-031-30333-3_40].
File allegati a questo prodotto
File Dimensione Formato  
Jamili S._Implementation_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 450.51 kB
Formato Adobe PDF
450.51 kB Adobe PDF   Contatta l'autore
Jamili S._Implementation_quarta di copertina_2023.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 659.3 kB
Formato Adobe PDF
659.3 kB Adobe PDF
Jamili S._Implementation_frontespizio_2023.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 61.5 kB
Formato Adobe PDF
61.5 kB Adobe PDF   Contatta l'autore
Jamili S._Implementation_indice_2023.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact