Functional safety is a key requirement in several application domains in which microprocessors are an essential part. A number of redundancy techniques have been developed with the common purpose of protecting circuits against single event upset (SEU) faults. In microprocessors, functional redundancy may be achieved through multi-core or simultaneous-multi-threading architectures, with techniques that are broadly classifiable as Double Modular Redundancy (DMR) and Triple Modular Redundancy (TMR), involving the duplication or triplication of architecture units, respectively. RISC-V plays an interesting role in this context for its inherent extendability and the availability of open-source microarchitecture designs. In this work, we present a novel way to exploit the advantages of both DMR and TMR techniques in an Interleaved-Multi-Threading (IMT) microprocessor architecture, leveraging its replicated threads for redundancy, and obtaining a system that can dynamically switch from DMR to TMR in the case of faults. We demonstrated the approach for a specific family of RISC-V cores, modifying the microarchitecture and proving its effectiveness with an extensive RTL fault-injection simulation campaign.
Evaluation of Dynamic Triple Modular Redundancy in an Interleaved-Multi-Threading RISC-V Core / Barbirotta, Marcello; Cheikh, Abdallah; Mastrandrea, Antonio; Menichelli, Francesco; Ottavi, Marco; Olivieri, Mauro. - In: JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS. - ISSN 2079-9268. - 13:1(2022), pp. 1-13. [10.3390/jlpea13010002]
Evaluation of Dynamic Triple Modular Redundancy in an Interleaved-Multi-Threading RISC-V Core
Marcello Barbirotta
Primo
Writing – Original Draft Preparation
;Abdallah Cheikh
Validation
;Antonio Mastrandrea
Methodology
;Francesco Menichelli
Supervision
;Mauro Olivieri
Project Administration
2022
Abstract
Functional safety is a key requirement in several application domains in which microprocessors are an essential part. A number of redundancy techniques have been developed with the common purpose of protecting circuits against single event upset (SEU) faults. In microprocessors, functional redundancy may be achieved through multi-core or simultaneous-multi-threading architectures, with techniques that are broadly classifiable as Double Modular Redundancy (DMR) and Triple Modular Redundancy (TMR), involving the duplication or triplication of architecture units, respectively. RISC-V plays an interesting role in this context for its inherent extendability and the availability of open-source microarchitecture designs. In this work, we present a novel way to exploit the advantages of both DMR and TMR techniques in an Interleaved-Multi-Threading (IMT) microprocessor architecture, leveraging its replicated threads for redundancy, and obtaining a system that can dynamically switch from DMR to TMR in the case of faults. We demonstrated the approach for a specific family of RISC-V cores, modifying the microarchitecture and proving its effectiveness with an extensive RTL fault-injection simulation campaign.File | Dimensione | Formato | |
---|---|---|---|
Barbirotta_Evaluation_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.