A linear-quadratic optimal control problem is considered for the infinite-dimensional model of a one-link flexible arm. Two boundary inputs are assumed to be available, namely the joint torque at the link base and a transverse force at the tip of the link. The problem is formulated and solved using semigroup theory and duality arguments. Simulation results are provided to support the theoretical findings, comparing the proposed optimal LQ law with a more conventional PD/state feedback controller in terms of cost and transient performance.
Linear-quadratic optimal boundary control of a one-link flexible arm / Cristofaro, Andrea; De Luca, Alessandro; Lanari, Leonardo. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 5:30(2021), pp. 833-839. [10.1109/LCSYS.2020.3006714]
Linear-quadratic optimal boundary control of a one-link flexible arm
Cristofaro, Andrea
;De Luca, Alessandro;Lanari, Leonardo
2021
Abstract
A linear-quadratic optimal control problem is considered for the infinite-dimensional model of a one-link flexible arm. Two boundary inputs are assumed to be available, namely the joint torque at the link base and a transverse force at the tip of the link. The problem is formulated and solved using semigroup theory and duality arguments. Simulation results are provided to support the theoretical findings, comparing the proposed optimal LQ law with a more conventional PD/state feedback controller in terms of cost and transient performance.File | Dimensione | Formato | |
---|---|---|---|
Cristofaro_Postprint_Linear-quadratic_2020.pdf
accesso aperto
Note: DOI: 10.1109/LCSYS.2020.3006714
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | |
Cristofaro_Linear-quadratic_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.