A linear-quadratic optimal control problem is considered for the infinite-dimensional model of a one-link flexible arm. Two boundary inputs are assumed to be available, namely the joint torque at the link base and a transverse force at the tip of the link. The problem is formulated and solved using semigroup theory and duality arguments. Simulation results are provided to support the theoretical findings, comparing the proposed optimal LQ law with a more conventional PD/state feedback controller in terms of cost and transient performance.

Linear-quadratic optimal boundary control of a one-link flexible arm / Cristofaro, Andrea; De Luca, Alessandro; Lanari, Leonardo. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 5:30(2021), pp. 833-839. [10.1109/LCSYS.2020.3006714]

Linear-quadratic optimal boundary control of a one-link flexible arm

Cristofaro, Andrea
;
De Luca, Alessandro;Lanari, Leonardo
2021

Abstract

A linear-quadratic optimal control problem is considered for the infinite-dimensional model of a one-link flexible arm. Two boundary inputs are assumed to be available, namely the joint torque at the link base and a transverse force at the tip of the link. The problem is formulated and solved using semigroup theory and duality arguments. Simulation results are provided to support the theoretical findings, comparing the proposed optimal LQ law with a more conventional PD/state feedback controller in terms of cost and transient performance.
2021
distributed parameter systems; robotics; optimal control; flexible links
01 Pubblicazione su rivista::01a Articolo in rivista
Linear-quadratic optimal boundary control of a one-link flexible arm / Cristofaro, Andrea; De Luca, Alessandro; Lanari, Leonardo. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 5:30(2021), pp. 833-839. [10.1109/LCSYS.2020.3006714]
File allegati a questo prodotto
File Dimensione Formato  
Cristofaro_Postprint_Linear-quadratic_2020.pdf

accesso aperto

Note: DOI: 10.1109/LCSYS.2020.3006714
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF
Cristofaro_Linear-quadratic_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1425625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact