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Linear-quadratic optimal boundary control of a
one-link flexible arm

Andrea Cristofaro?, Alessandro De Luca, Leonardo Lanari

Abstract—A linear-quadratic optimal control problem is con-
sidered for the infinite-dimensional model of a one-link flexible
arm. Two boundary inputs are assumed to be available, namely
the joint torque at the link base and a transverse force at the tip of
the link. The problem is formulated and solved using semigroup
theory and duality arguments. Simulation results are provided to
support the theoretical findings, comparing the proposed optimal
LQ law with a more conventional PD/state feedback controller
in terms of cost and transient performance.

Index Terms—Distributed parameter systems; Robotics; Opti-
mal control

I. INTRODUCTION

CONTROLLED mechanical systems with flexible com-
ponents have recently become an important and fertile

research area, due to their versatility, high speed response and
low energy consumption. Several examples of such systems
may be found in soft robotics, i.e., flexible manipulators [1]
or UAVs with flexible and articulated wings [2]. These systems
are characterized by a distributed parameter nature, and their
dynamics are typically governed by a combination of high-
order partial differential equations (PDEs), ordinary differen-
tial equations (ODEs) and a set of static boundary conditions.
Coupled systems of first and second order PDEs with ODEs
have been largely investigated in the literature, and tackled
with different approaches, such as backstepping [3], [4] or
Lyapunov methods [5], [6], [7].

A complete description of finite-dimensional models of a
single-link flexible robotic arm with geometric and dynamic
boundary conditions is provided in [8], while additional in-
sights on the relation between finite- and infinite-dimensional
models of a flexible beam are given in [9]. The system
has been recognized to have non-minimum phase zeros that
depend on the inertia at the link end, and some techniques
to overcome this issue have been proposed [10], [11]. Simul-
taneous stabilization of beam orientation and deflection was
investigated in [12], [13], while the trajectory tracking problem
was addressed, e.g., in [14], [15], [16], [17].

In this paper, we consider a flexible beam carrying a mass
with inertia at the tip and clamped at the base to a motor
providing a joint torque. An additional actuator is placed at the
tip, generating an input force in the transverse direction to the
beam axis (see, e.g., [10] for an actual implementation of such
command). In particular, such input redundancy can be used
to achieve secondary objectives e.g., reduction of oscillations
and/or improvement of tracking accuracy.
The classical Euler-Bernoulli infinite-dimensional model is
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adopted for the flexible beam. Despite some potential in-
crease in computational complexity, dynamical models based
on PDEs guarantee higher accuracy in reflecting the dis-
tributed characteristics of the system, as compared to finite-
dimensional approximations based on the assumed modes
description. Moreover, using operator theory, the considered
model can be successfully translated into an abstract linear
differential system defined on a suitable Hilbert space and, as
such, it can be treated using some tools inherited from classical
and optimal control theory [18], [19].

We focus in particular on a class of linear-quadratic reg-
ulation problems for the Euler-Bernoulli model of a single-
link flexible arm, and we look for the optimal inputs capable
of transferring the system between two equilibrium states,
both with zero link deformation, from an initial to a final
desired joint position (rest-to-rest slewing maneuver). To the
best of our knowledge, this problem has never been explicitly
addressed before in the infinite-dimensional framework.

The main contributions of the paper can be summarized as
follows.
• We introduce a quadratic cost functional that weights

the joint angle position error, the distributed deflection
of the beam during motion, and in particular the link
deformation at the tip, as well as the control efforts.

• The optimal control commands are obtained as linear
functions of the system co-state, which satisfies an adjoint
equation defined in a natural way.

• The results obtained with the proposed optimal LQ
framework are compared with a controller that uses a
standard PD law for the joint torque and a state feedback
stabilizing law for the tip force.

Some related results, with a specific emphasis on the finite-
dimensional approximation of linear-quadratic optimal con-
trols via modal decomposition, can be found in [20], where
the authors claim an interesting property of commutativity for
the operations of discretization and optimization.

The paper is organized as follows. The basic notation and
the problem setup are given in Section II, while the well-
posedness is addressed in Section III. Having guaranteed the
existence of solutions, the actual optimal control problem
is tackled in Section IV. Finally, a numerical case study is
considered in Section V.

II. PROBLEM SETUP

Let us consider a single-link flexible robotic arm of length
L > 0, with the link base attached to an actuated joint and the
free end carrying a payload. Without loss of generality, the
motion is assumed to be constrained on a horizontal plane,
thus neutralizing the gravity action. We denote by % the mass
density and by EI the flexural rigidity of the link, by Mp the
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Figure 1. Sketch of the one-link flexible arm.

tip mass, and by Jh and Jp the inertia of the base motor and
of the tip payload, respectively. Figure 1 shows a sketch of the
flexible arm with its control inputs τ and F . The dynamics
of the flexible arm is described by the following linear partial
differential equation based on the well-known Euler-Bernoulli
beam model [1], [13]

%z̈(t, x) = −EIzxxxx(t, x) x ∈ (0, L) (1)

with boundary conditions

z(t, 0) = 0

Jhz̈x(t, 0)− EIzxx(t, 0) = τ(t)

Mpz̈(t, L)− EIzxxx(t, L) = F (t)

Jpz̈x(t, L) + EIzxx(t, L) = 0

(2)

In the equations above, the dot notation ż stands for partial
derivative with respect to t (time), while the subscript zx indi-
cates partial derivative with respect to x (space). The state of
the system is z(t, x) = xθ(t) + δ(t, x), where θ(t) is the joint
angle and δ(t, x) represents the distributed beam deflection.
The tip force F (t) and the joint torque τ(t) are the accessible
control inputs to the system. The torque at the base τ(t) is
a typical control input in robotic systems, whereas the tip
force, following [1], [10], is somewhat redundant but allows to
better balance the arm deflection induced by the joint rotation
and reduce oscillations. Fixing a finite time horizon [0, T ]
and a reference trajectory profile for the joint angle θd(t), we
are typically interested in determining optimal control inputs
F ?(t), τ?(t) that attain minimization of quadratic cost indices
of the form

(F ?(t), τ?(t)) = arg minW (F, τ)

W (F, τ) =

T∫
0

α L∫
0

|δ(t, x)|2dx+ β|θ(t)− θd(t)|2
 dt

+αL

T∫
0

|δ(t, L)|2dt+

T∫
0

[F (t) τ(t)]Γ

[
F (t)

τ(t)

]
dt

+αT

L∫
0

|δ(T, x)|2dx+ βT |θ(T )− θd(T )|2

(3)
with weights α, β, αL, αT , βT ≥ 0 and Γ = ΓT � 0. The
minimization of the cost (3) aims at reducing the deflection
along the whole arm while tracking the desired joint angle
trajectory and simultaneously attempting to keep the control

effort low. In particular, independent weights are assigned
to the total deflection (α), the joint tracking error (β), the
deflection at the tip (αL), and the configuration at the final
time T (αT , βT ).

The PDE problem (1–2) can be rearranged in an abstract
form using operator theory. In particular, reordering and merg-
ing the boundary states in a single vector, the system can be
written in the equivalent form

ξ̇ = Aξ + Bυ (4)

where ξ = [ξT1 ξ
T
2 ]T is the state with

ξ1 = [z(t, x) zx(t, L) z(t, L) zx(t, 0)]T

ξ2 = ξ̇1
(5)

and υ = [F (t) τ(t)]T is the boundary input vector. It is worth
to highlight that the first and and the fifth components of the
state vector ξ, i.e., z(t, x) and ż(t, x), are distributed quantities
and therefore infinite-dimensional states. The operators A, B
are given, respectively, by

A =

[
04×4 I4×4
−A0 04×4

]
, B =

 06×1 06×1

M−1p 0

0 J−1h

 (6)

with

−A0ξ1 =


−σzxxxx(t, x)
−ε1zxx(t, L)
ε2zxxx(t, L)
ε3zxx(t, 0)

 (7)

and where coefficients have been rearranged as σ = %−1EI,
ε1 = J−1p EI , ε2 = M−1p EI ,and ε3 = J−1h EI .
Let us recall that L2(0, L) indicates the space of functions
f(x) such that the integral

∫ L

0
|f(x)|2dx exists and is finite.

Moreover, the Sobolev space Hk(0, L) is the space of func-
tions f(x) whose derivatives of order j = 0, 1, ..., k are in
L2(0, L). Introducing then the subset

Hk
0−(0, L) := {z ∈ Hk(0, L) : z(0) = 0} (8)

to take into account the boundary condition at the base, we
can define the state space for system (4) as the Hilbert space

H := H2
0−(0, L)× R3 × V (9)

with V = L2(0, L)× R3, endowed with the inner product

〈ξ, ξ̃〉H = 〈A0ξ1, ξ̃1〉V + 〈ξ2, ξ̃2〉V

+zx(0)z̃x(0) + ζ3ζ̃3

(10)

for ξ = (ξ1, ξ2) = (z, ζ, w,ω), ξ̃ = (ξ̃1, ξ̃2) =
(z̃, ζ̃, w̃, ω̃) ∈ H, where ζ = (ζ1, ζ2, ζ3) and ζ̃ = (ζ̃1, ζ̃2, ζ̃3).
Accordingly, the domain of the operator A is the subspace

D(A) =
{

(z, ζ, w,ω) ∈ H4
0−(0, L)×R3×H2

0−(0, L)×R3 :

ζ1 = zx(L), ζ2 = w(L), ζ3 = zx(0),

ω1 = wx(L), ω2 = w(L), ω3 = wx(0)
}

It is easy to see that D(A) is dense in H. The inner product
defined in (10) induces a norm on the Hilbert space H that
corresponds to a classical energy norm (potential energy +
kinetic energy) plus some correction terms to evaluate the rigid
motion zx(0) (see [13] for further details).
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III. WELL POSEDNESS

In order to design an optimal controller for the flexible
arm, we need to guarantee that system (4) is well posed, this
meaning that for any admissible control input υ(t) there exists
a unique solution ξ(t). In this regard, let us state the main
theorem of this section.

Theorem 3.1: The operator A : D(A) → H generates a
strongly continuous semigroup T (t) = eAt on the space H.
The forthcoming derivations are instrumental for the proof of
the theorem. For ξ ∈ D(A), let us evaluate

〈Aξ, ξ〉H = 〈A0ξ2, ξ1〉V + 〈−A0ξ1, ξ2〉V
+wx(0)zx(0) + ω3ζ3

(11)

Observing that A0 is self-adjoint, i.e. 〈−A0ξ1, ξ2〉V =
−〈ξ1,A0ξ2〉V , and using ξ ∈ D(A) one gets

〈Aξ, ξ〉H = 2ω3ζ3 ≤ 〈ξ, ξ〉H (12)

where Schwartz inequality has been applied. Consider now the
adjoint operator A∗, together with its domain D(A∗), such
that

〈Aξ,ν〉H = 〈ξ,A∗ν〉H ∀ξ ∈ D(A), ∀ν ∈ D(A∗) (13)

Using standard duality arguments and the self-adjointness of
the operator A0, it follows that, given ν = (y,ψ, u,η) ∈
D(A∗) ⊂ H, the adjoint of A has the expression

A∗ =

[
04×4 −I4×4
A0 04×4

]
(14)

with domain

D(A∗)=
{

(y,ψ, u,η) ∈ H4
0−(0, L)×R3×H2

0−(0, L)×R3 :

ψ1 = −yx(L), ψ2 = −y(L), ψ3 = −yx(0),

η1 = −ux(L), η2 = −u(L), η3 = −ux(0)
}

In particular for ν = (ν1,ν2), by direct calculation, we have

〈Aξ,ν〉H = 〈A0ξ2,ν1〉V + 〈−A0ξ1,ν2〉V
+wx(0)yx(0) + ω3ψ3︸ ︷︷ ︸

=0

= 〈A0ξ1,−ν2〉V + 〈ξ2,A0ν1〉V
−zx(0)ux(0)− ζ3η3︸ ︷︷ ︸

=0

= 〈ξ,A∗ν〉H

(15)
We are now ready to prove the well-posedness of the
differential system (4).

Proof: [of Theorem 3.1] Evaluating the product
〈A∗ν,ν〉H, and applying again Schwartz inequality, yields

〈A∗ν,ν〉H = −ux(0)yx(0)− η3ψ3 ≤ 〈ν,ν〉H (16)

The conclusion then follows by applying [18, Corollary 2.2.3].
In particular, the semigroup T (t) generated by the operator
A satisfies

‖T (t)‖ ≤ ec0t (17)

The unique solution of (4) is in the form ξ(t) = eAtξ(0) +
eAt ∗Bυ(t), where ∗ stands for the convolution product.

IV. OPTIMAL CONTROL

In order to guarantee existence and uniqueness of the
optimal control, it is desirable to have the running cost and
the terminal cost in the form of the squared H-norm induced
by (10) (see for instance [21]). This is not the case for the
functional W (F, τ) defined in (3): although this seems natural
and intuitive choice for the cost index, it is not suitable for
the infinite-dimensional LQR theory. To overcome the issue,
we can consider the relaxed class of problems

(F ?(t), τ?(t)) = arg min W̄ (F, τ)

W̄ (F, τ) =

T∫
0

〈(ξ(t)− ξd(t)),Λ(ξ(t)− ξd(t))〉H dt

+

T∫
0

[F (t) τ(t)] Γ

[
F (t)
τ(t)

]
dt

+〈(ξ(T )− ξd(T )),K(ξ(T )− ξd(T ))〉H

(18)

where Λ = ΛT � 0, K = KT � 0 are constant matrices in
R8×8 and ξd(t) ∈ L2((0, T );H) is a state reference trajectory.
The first integral term in (18) weights the state tracking error,
the second integral term weights the control effort (this is left
unchanged from (3)) and the last term represents a terminal
cost. The weighting functions of states and inputs appearing
in the integral terms are referred to as the running cost.

Remark 4.1: The relaxed problem (18) can be brought to
a form similar to the original one (3), but including a mixed
term depending on θ(t) and δ(t, x). This can be done selecting
the weighting matrices as

Λ = diag {α, β/2, αL, β/2, 0, 0, 0, 0} � 0

K = diag {αT , βT /2, 0, βT /2, 0, 0, 0, 0} � 0
(19)

and considering a reference trajectory

ξd(t)=(zd(t, x), zx,d(t, L), zd(t, L), zx,d(t, 0), . . . , żx,d(t, 0))

with
zd(t, x) = xθd(t) zx,d(t, L) = θd(t)

zd(t, L) = Lθd(t) zx,d(t, 0) = θd(t)
(20)

which corresponds to a prescribed trajectory for the joint
angle θd(t) and to an identically zero deflection δd(t, x) ≡ 0.

A. The adjoint equation

The infinite-dimensional system (4) is described by an
unbounded state operator A together with a bounded input
operator B, and therefore the LQ optimal control synthesis
technique described in [21, Chapter 7] can be applied. To this
end, we introduce the adjoint equation to (4)

−ṗ = A∗p+ g, p(T ) = pT (21)

where (g,pT ) ∈ L2((0, T );H)×H are arbitrary. As long as
ξ is a solution to

ξ̇ = Aξ + f , ξ(0) = ξ0 (22)

a useful duality argument is in force.
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Lemma 4.1: For every (f , ξ0) ∈ L2((0, T );H) × H and
every (g,pT ) ∈ L2((0, T );H)×H the following formula holds
true

T∫
0

〈f(t),p(t)〉Hdt =

T∫
0

〈g(t), ξ(t)〉Hdt

+〈ξ(T ),pT 〉H − 〈ξ0,p(0)〉H

(23)

The proof uses properties of differentiation under the inte-
gral sign and density arguments [21]. While the above duality
formula holds in general, the design of the optimal controller
in closed-form requires a special choice for the function g and
the final condition pT . Similar to the finite-dimensional case,
g and pT have to be selected as the derivatives1 of the running
cost and the terminal cost, respectively. Such a choice leads
to the adjoint infinite-dimensional system

−ṗ = A∗p− 2Λ(ξ − ξd)

p(T ) = −2K(ξ(T )− ξd(T ))
(24)

B. Optimal control synthesis

Let us preliminary observe that the existence of the optimal
control follows from the weak compactness of minimizing
sequences and from the weak lower semi-continuity of the
cost functional [21, Theorem 7.3.1], which is guaranteed
by the convexity of the running cost and the terminal cost.
Furthermore, convexity can also be used to prove uniqueness
of the optimal control. The following statement addresses the
problem of optimal control synthesis.

Theorem 4.1: Consider equation (4) coupled with the ad-
joint equation (24). Let (ξopt,υopt) be the optimal solution
for system (4) with the cost functional (18). Then the optimal
input υopt is given by

υopt = −Γ−1BTpopt (25)

where popt is the solution to the adjoint equation (24) with
the optimal state ξopt.

Proof: Let (ξopt,υopt) be the optimal solution, and set
G(υ) = W̄ ′(υ), where the derivative is performed in the
Fréchet sense. By optimality, we must have G(υopt) = 0. On
the other hand, for any υ ∈ L2(0, T )×L2(0, T ), the following
holds

G(υopt)υ =

T∫
0

〈2Λ(ξopt − ξd),χ〉H dt+

T∫
0

υT
optΓυ dt

+ 〈2K (ξopt(T )− ξd(T )) ,χ(T )〉H
(26)

where χ is the solution to

χ̇ = Aχ+ Bυ
χ(0) = 0

(27)

1To be performed in the Fréchet sense with respect to the system state.

Now, applying Lemma 4.1 to popt and χ and performing some
simple algebraic manipulations, one gets

G(υopt)υ =

T∫
0

〈popt,Bυ〉H dt+

T∫
0

υT
optΓυ dt

=

T∫
0

(Γ−1BTpopt + υopt)
T Γυ dt = 0

(28)

Since the last identity must hold for every υ ∈ L2(0, T ), one
has necessarily υopt given by (25), concluding the proof.

Remark 4.2: The same result may be formally obtained by
considering the Hamiltonian

H(ξ,υ,p)=〈p,Aξ+Bυ〉H−〈(ξ−ξd),Λ(ξ−ξd)〉H−υTΓυ

and applying an infinite-dimensional version of the Pontryagin
maximum principle. The optimal control υopt maximizes the
Hamiltonian, and the optimal state and costate (ξopt,popt)
are related by the canonical equations

ξ̇opt =
∂H(ξ,υ,p)

∂p

ṗopt = −∂H(ξ,υ,p)

∂ξ

(29)

where the differentiation in the right-hand side is performed
in the sense of the Fréchet derivative.

C. Control implementation
The cost function and the corresponding optimal control

problems are given in a general form that allows to fully
catch the behaviour of the system, which is characterized
by an interplay of distributed and boundary states. In the
typical collocated setup the boundary states and their temporal
derivatives are the only quantities in the system to be directly
measurable, by a joint encoder placed on the motor and, for
instance, by a camera overlooking the plane of motion of the
flexible arm. In this regard, let C ∈ R6×8 be defined as the
output matrix

C =

[
03×1 I3×3 03×1 03×3
03×1 03×3 03×1 I3×3

]
(30)

corresponding to the removal of the distributed components
of the state ξ(t), i.e., z(t, x) and ż(t, x), from the set of
available measurements. If matrices Λ and K in (18) are
chosen as Λ = CT Λ̂C and K = CT K̂C for some reduced-
order matrices Λ̂, K̂, then the co-state equations (24) will
not depend on the distributed part of the state ξ(t), and
therefore the resulting optimal control can be implemented
based on boundary states only. When the cost functional is
in the complete form (18) and includes distributed states,
a distributed observer may be considered [22], [23] for the
estimation of such states.
The implementation of the controller (25) requires in general
the discretization of the adjoint equation (24). However, the
dual structure of the operator A and its adjoint implies that
any discretization of the state equation automatically provides
a natural discretization of the co-state equation, either by
modal decomposition or by finite-elements approximation. The
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optimal control is then implementable by solving the two-point
boundary value problem given by the interconnection of state
and co-state equations, for example using a shooting method
provided the initial system state is fully known [24, Section 6].

V. SIMULATION RESULTS

For simulation purposes, a flexible robotic arm (1–2) has
been considered with the following physical parameters2:

L = 0.7 [m], ρ = 2.975 [Kg/m],
EI = 2.4507 [N·m2], Jh = 0.00195 [Kg·m2],
Mp = 0.1117 [Kg], Jp = 0.0005 [Kg·m2]

The motion control task is a rest-to-rest maneuver (with zero
boundary velocities) that should transfer, within a fixed time
interval T , the flexible arm from the initial configuration
z(0, x) ≡ 0 to a desired one z(T, x) = zd(x) = xπ/4 (a
new equilibrium), corresponding to a joint angle θd = π/4
(set-point) with zero deflection δ(T, x) ≡ 0, ∀x ∈ [0, L].
Transferring in finite time the flexible arm from the joint
position θ(0) = 0 to a final joint position θ(T ) = θd with-
out inducing any link deflection during motion is physically
unfeasible. Therefore, we expect a trade-off between joint
error, overall link deflection and total control effort. The final
time has been set to T = 8 s, but this does not prevent the
optimal trajectory from converging earlier to its steady-state.
The weighting matrices in the cost functional (18) have been
chosen as follows:

Λ = diag {0, 0, 50, 10, 0, 0, 1, 1} , Γ = diag {10, 1} , K = 0

The weights in the first matrix reflect the priority in controlling
the position of the payload at the tip of the flexible arm vs. the
position of the joint at the link base. In fact, the task priorities
are scheduled as follows:

1) z(t, L)→ zd(L) = Lθd

2) zx(t, 0) = θ(t)→ θd

3) żx(t, 0) = θ̇(t)→ 0, ż(t, L)→ 0

Moreover, the non-uniform weights in the input matrix Γ
correspond to a scenario where the tip control force F is
cheaper than the joint torque τ generated by the motor. We
denote by υopt,LQ(t) the optimal control law given by (25).

In the present case study, we have considered for compar-
ison another control law, denoted for simplicity υPD/F (t),
which consists of a standard PD controller for the joint
torque, i.e., τPD(t) = kp (θd − zx(t, 0)) − kdżx(t, 0), with
gains kp = 5 and kd = 3, together with a stabilizing linear
state-feedback for the tip force F (t) = −kF ż(t, L). Such
controller is a modification of the PD scheme proposed in [1,
Section 6], and is tuned in order to have a fast response on
the prioritized variables z(t, L) and zx(t, 0). To enrich the
comparison, we considered also the simple PD version of the
controller υPD(t), i.e. with kF = 0. The PDE system has
been simulated using a finite element scheme, i.e., considering
a uniform decomposition of [0, L] in n = 10 elements.

Figures 2–4 compare the performance over time of the
two controllers. The LQ control guarantees optimality, and
Figure 2 shows that a faster transient is obtained both on joint

2The considered parameters correspond to the forearm’s model of the
Flexarm robot [8].

and tip positioning, while steady-state accuracy is comparable
with the one obtained with the PD/state feedback control and
better than the one obtained with the pure PD control that
yields undesired oscillations. Furthermore, Figure 3 shows that
the arm deformation at the tip is much smaller with the LQ
optimal control, in particular in terms of the maximum peak
which is less than halved w.r..t. PD/state feedback control,
the latter being also characterized by a longer persistency of
the deformation. Note that the initial time behaviour of the
tip deformation is opposite to and lags behind rigid motion,
thus revealing the non-minimum phase nature of this system
output. We also found that the initial deformation becomes
larger in the reverse scenario of optimal control, when tip force
becomes more expensive than joint torque. Figure 4 reports
the control inputs. The tip force input F for the LQ optimal
control has an initial peak (out of scale) and then a crossover
with the joint torque occurs at t ≈ 0.5 s. In particular, the two
inputs have opposite signs for a while and display a rather
opposite action in order to keep the deformation small. The
tip force input F for the PD/state feedback control is instead
characterized by persistent oscillations after the convergence
of the states. Evaluating the cost of the three controllers yields

W̄ (υopt,LQ) ≈ 1.8, W̄ (υPD/F ) ≈ 3.9, W̄ (υPD) ≈ 2.9

showing that the LQ optimal control is indeed much cheaper
than the PD/state feedback control law. The time history of the
cost function along system trajectories in the three considered
cases is reported in Figure 5 for a better comparison. We
also found that optimal costs are monotonically decreasing
for higher flexural rigidity and increasing for larger payload
inertia. Figure 6 shows timed snapshots of the flexible arm
motion under the action of the LQ optimal controller. After
an initial transient, the flexible arm does not show any further
appreciable deformation.

VI. CONCLUSIONS

A class of linear-quadratic optimal control problems for
an infinite-dimensional model of a single-link flexible robotic
arm has been addressed. The cost function evaluates both the
distributed and the boundary parts of the system state, together
with the effort of two boundary inputs given by the joint torque
at the link base and a force at the tip. The optimal controller
has been obtained in closed form in terms of the co-state of the
system, which is the solution of a suitable adjoint equation. In
a case study of a rest-to-rest maneuver, the optimal control law
compares favourably with a conventional PD/state feedback
control law.
Future research will be devoted to the extension of the optimal
control setup to multi-link flexible robots and oriented towards
experimental validation.
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