Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.

Real-time multimodal signal processing for HRI in RoboCup: understanding a human referee / Ansalone, Filippo; Maiorana, Flavio; Affinita, Daniele; Volpi, Flavio; Bugli, Eugenio; Petri, Francesco; Brienza, Michele; Spagnoli, Valerio; Suriani, Vincenzo; Nardi, Daniele; Bloisi, Domenico Daniele. - (2024), pp. 8-13. (Intervento presentato al convegno Italian Workshop on Artificial Intelligence and Robotics tenutosi a Bozen; Italy).

Real-time multimodal signal processing for HRI in RoboCup: understanding a human referee

Filippo Ansalone
Co-primo
;
Flavio Maiorana
Co-primo
;
Daniele Affinita;Flavio Volpi;Eugenio Bugli;Francesco Petri;Michele Brienza;Vincenzo Suriani;Daniele Nardi
Penultimo
;
Domenico Daniele Bloisi
Ultimo
2024

Abstract

Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
2024
Italian Workshop on Artificial Intelligence and Robotics
human-robot interaction; audio communication; gesture communication; soccer robots
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Real-time multimodal signal processing for HRI in RoboCup: understanding a human referee / Ansalone, Filippo; Maiorana, Flavio; Affinita, Daniele; Volpi, Flavio; Bugli, Eugenio; Petri, Francesco; Brienza, Michele; Spagnoli, Valerio; Suriani, Vincenzo; Nardi, Daniele; Bloisi, Domenico Daniele. - (2024), pp. 8-13. (Intervento presentato al convegno Italian Workshop on Artificial Intelligence and Robotics tenutosi a Bozen; Italy).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1753824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact