The aim of the present work is to try to understand whether, using the original (unprocessed) dermoscopic images and the additional texture information from the whole (unsegmented) images, a Convolutional Neural Network (CNN) can effectively distinguish between nevi and melanomas, which have similar features and are therefore difficult to diagnose.

Dermatological Classification and Segmentation by Means of Convolutional Neural Network / Grignaffini, F.; Barbuto, F.; Troiano, M.; Piazzo, L.; Mangini, F.; Cantisani, C.; Schiavella, G.; Manti, D.; Ferranti, R.; Frezza, F.. - (2025). (Intervento presentato al convegno Maker Faire Rome 2025 tenutosi a Roma).

Dermatological Classification and Segmentation by Means of Convolutional Neural Network

F. Grignaffini;F. Barbuto;M. Troiano;L. Piazzo;F. Mangini;C. Cantisani;G. Schiavella;R. Ferranti;F. Frezza
2025

Abstract

The aim of the present work is to try to understand whether, using the original (unprocessed) dermoscopic images and the additional texture information from the whole (unsegmented) images, a Convolutional Neural Network (CNN) can effectively distinguish between nevi and melanomas, which have similar features and are therefore difficult to diagnose.
2025
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1751775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact