The object of this paper is to show the impact of representing discrete-time dynamics as two coupled difference/differential equations in establishing passivity properties and describing port-Hamiltonian structures as well as the related energy-based control strategies.

Passivity Techniques and Hamiltonian Structures in Discrete Time / Normand-Cyrot, D.; Monaco, S.; Mattioni, M.; Moreschini, A.. - 444:(2024), pp. 327-352. (Intervento presentato al convegno 27th International Conference on Difference Equations and Applications, ICDEA 2022 tenutosi a Gif-sur-Yvette; France) [10.1007/978-3-031-51049-6_15].

Passivity Techniques and Hamiltonian Structures in Discrete Time

Monaco S.
;
Mattioni M.
;
Moreschini A.
2024

Abstract

The object of this paper is to show the impact of representing discrete-time dynamics as two coupled difference/differential equations in establishing passivity properties and describing port-Hamiltonian structures as well as the related energy-based control strategies.
2024
27th International Conference on Difference Equations and Applications, ICDEA 2022
discrete-time systems; energy-based control; passivity based control; port-hamiltonian structures
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Passivity Techniques and Hamiltonian Structures in Discrete Time / Normand-Cyrot, D.; Monaco, S.; Mattioni, M.; Moreschini, A.. - 444:(2024), pp. 327-352. (Intervento presentato al convegno 27th International Conference on Difference Equations and Applications, ICDEA 2022 tenutosi a Gif-sur-Yvette; France) [10.1007/978-3-031-51049-6_15].
File allegati a questo prodotto
File Dimensione Formato  
NormanCyrot_preprint_Passivity_2024.pdf

accesso aperto

Note: DOI: 10.1007/978-3-031-51049-6_15
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 368.97 kB
Formato Adobe PDF
368.97 kB Adobe PDF
NormandCyrot_Passivity_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.49 MB
Formato Adobe PDF
5.49 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact