In this paper, we propose a multiple-model adaptive estimation setup for a class of uncertain parabolic reaction-diffusion PDEs encompassing the Pennes' bio-heat equation, which is a motivating case study from the perspective of biomedical applications such as hyperthermia. The efficacy of the approach in estimating the system solution and recovering the value of the reaction coefficient is validated through numerical simulations in MATLAB. The validation step has highlited some limitations of classical numerical simulation tools that we propose to handle through an implementation of the estimator relying on Deep Learning libraries. This alternative approach is reported in a companion paper (Part II of this work).

Adaptive Estimation of the Pennes' Bio-Heat Equation - I: Observer Design / Cristofaro, A.; Cappellini, G.; Staffetti, E.; Trappolini, G.; Vendittelli, M.. - (2023), pp. 1931-1936. (Intervento presentato al convegno 62nd IEEE Conference on Decision and Control, CDC 2023 tenutosi a Singapore) [10.1109/CDC49753.2023.10383905].

Adaptive Estimation of the Pennes' Bio-Heat Equation - I: Observer Design

Cristofaro, A.
;
Cappellini, G.;Trappolini, G.;Vendittelli, M.
2023

Abstract

In this paper, we propose a multiple-model adaptive estimation setup for a class of uncertain parabolic reaction-diffusion PDEs encompassing the Pennes' bio-heat equation, which is a motivating case study from the perspective of biomedical applications such as hyperthermia. The efficacy of the approach in estimating the system solution and recovering the value of the reaction coefficient is validated through numerical simulations in MATLAB. The validation step has highlited some limitations of classical numerical simulation tools that we propose to handle through an implementation of the estimator relying on Deep Learning libraries. This alternative approach is reported in a companion paper (Part II of this work).
2023
62nd IEEE Conference on Decision and Control, CDC 2023
uncertainty; observers; numerical simulation; deep learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Adaptive Estimation of the Pennes' Bio-Heat Equation - I: Observer Design / Cristofaro, A.; Cappellini, G.; Staffetti, E.; Trappolini, G.; Vendittelli, M.. - (2023), pp. 1931-1936. (Intervento presentato al convegno 62nd IEEE Conference on Decision and Control, CDC 2023 tenutosi a Singapore) [10.1109/CDC49753.2023.10383905].
File allegati a questo prodotto
File Dimensione Formato  
Cristofaro_postprint_Adaptive_2023.pdf

accesso aperto

Note: DOI 10.1109/CDC49753.2023.10383905
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 506.72 kB
Formato Adobe PDF
506.72 kB Adobe PDF
Cristofaro_Adaptive_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 572.9 kB
Formato Adobe PDF
572.9 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1700501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact