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Abstract— In this paper, we propose a multiple-model adap-
tive estimation setup for a class of uncertain parabolic reaction-
diffusion PDEs encompassing the Pennes’ bio-heat equation,
which is a motivating case study from the perspective of biomed-
ical applications such as hyperthermia. The efficacy of the
approach in estimating the system solution and recovering the
value of the reaction coefficient is validated through numerical
simulations in MATLAB. The validation step has highlited
some limitations of classical numerical simulation tools that we
propose to handle through an implementation of the estimator
relying on Deep Learning libraries. This alternative approach
is reported in a companion paper (Part II of this work).

I. INTRODUCTION

The process of heat transfer in organic tissues is described
by a parabolic partial differential equation, referred to as
Pennes’ bio-heat equation, which is essentially a standard
heat equation plus a linear reaction term. Handling properly
such equation is instrumental to improving the effective-
ness of minimally invasive thermal therapies [1] like, e.g.,
superficial hyperthermia, a treatment critically related to
the actual temperature rise at the target [2], [3]. On the
other hand, control and estimation for the bio-heat equation
are somewhat difficult due to the presence of uncertain
coefficients and to the fact that, typically, in order to avoid
the use of invasive temperature sensors, one can rely on
boundary measurements only.

Parabolic PDEs with parametric uncertainties have been
moderately investigated in the literature. Many of the avail-
able results pertain either robust control design (see for
example [4], [5], [6], [7] and the references therein) or
robust/adaptive observer design with distributed measure-
ments or structured uncertainties [8], [9], [10]. An interesting
approach based on interval observers is proposed in [11].
Nevertheless, for a parabolic reaction-diffusion equation with
unknown coefficient of the reaction term like the one consid-
ered in this paper, the only viable approach to adaptive esti-
mation, among the existing ones, seems to be backstepping
observer design [12], [13]. On the other hand, the synthesis
of backstepping observers is based on complex integral
transformations, which may prevent the method from being
efficiently applied in real-time. For this reason, we investi-
gate here a different setup based on multiple-model (MM)
adaptive estimation, mimicking the approach described in
[14] for finite-dimensional linear systems. This allows a
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fairly accurate estimation of the solution to be obtained,
which depends on the number of models considered, along
with a recovery of the uncertain coefficient. In particular,
the contribution of the paper is twofold. On the one hand,
we investigate the design of the multiple-model adaptive
observer for the general class of 1D parabolic reaction-
diffusion equations. In fact, to the best of our knowledge, this
is the first time that multiple models are used to tackle an
adaptive estimation problem in infinite-dimensional systems.
On the other hand, we use this machinery to solve the robust
estimation problem for the 1D Pennes’ bio-heat Equation
with boundary measurements. It must be pointed out, how-
ever, that the implementation of the multiple-model scheme
for a PDE seems to have some intrinsic limitations due to the
reduced computational capabilities of standard solvers. To
overcome such issues, the implementation of the estimation
setup using PINNs is proposed in the companion paper [15],
which aims at illustrating an efficient architecture for real-
time applications. These results lay the basis for feedback
control of temperature at the target volume in superficial
hyperthermia treatments.

A. Notation
Given a function f : Rn → R, we denote by ∂zif the

partial derivative of f(z1, ..., zn) with respect to the variable
zi, i = 1, ..., n. The notation L2[0, 1] stands for the space of
functions f : [0, 1] → R whose squared integral is finite and
corresponds to the L2-norm, that is

∥f∥L2 :=

(∫ 1

0

|f(z)|2dz
) 1

2

< +∞

B. 1D Pennes’ bio-heat Equation
The Pennes’ bio-heat Equation describes the evolution of

the temperature T (x, t) in a biological tissue, and it is given
by the parabolic reaction-diffusion PDE

ϱc∂tT = κeff∂xxT − ϱbwbcb(T − Ta) +Q (1)

where ϱ is the tissue density, c is specific heat of the tissue,
keff is the termal conductivity of the tissue, ϱ is blood density,
wb is the blood perfusion rate, cb is the specific heat of blood,
Ta is the arterial blood temperature and Q is an internal
heat source. The blood perfusion rate wb is bounded within
a certain range, but the actual value is typically not known.

Remark 1.1: Let us observe that, thanks to linearity, the
dependency on the constant Ta can always be removed from
equation (1) by defining the change of variables T̄ := T−Ta.

II. PROBLEM FORMULATION AND PROPOSED APPROACH

In light of Remark 1.1 and upon appropriate transforma-
tions, detailed in [15] and inspired by [16], the 1D bio-
heat Equation (1) can be recast as a linear reaction-diffusion



equation in the general form

∂tT = σ∂xxT − ωT +Ψ (2)

defined for (x, t) ∈ [0, 1]× [0,+∞) with Robin-type bound-
ary conditions

T (0, t) = C0 t ≥ 0

∂xT (1, t) = v(t) t ≥ 0
(3)

where C0 ∈ R is a known constant and v(t) is a boundary
input, and with initial condition

T (x, 0) = T0(x) x ∈ [0, 1] (4)

The coefficient σ > 0 is a known positive constant, the
coefficient ω ≥ 0 is possibly unknown and Ψ = Ψ(x, ·) ∈
C([0,+∞);L2(0, 1)) is a known smooth internal source.
The boundary conditions (3) describe a setup characterized
by a fixed temperature at one side of the domain and a
tunable heat flux at the other side. In particular, referring to
the inspiring model (1) presented earlier, the boundary x = 0
corresponds to the deepest point in the tissue, whereas x = 1
corresponds to the skin surface.

Let us assume that the value of the input v(t) is accessible
and that, in addition, the output

y(t) = T (1, t) (5)

is available at any t ≥ 0. The initial condition T0(x) and the
input v(t) are supposed to be smooth enough to guarantee the
existence of a mild solution [17]. Let us give the following
assumption which will be used in the formulation of later
results.

Assumption 2.1: The non-negative coefficient ω satisfies:
i) ω is constant;

ii) there exist known lower and upper bound ωmin, ωmax

with 0 ≤ ωmin ≤ ω ≤ ωmax.

Bearing this in mind, the main goal is to reconstruct
asymptotically the solution T (x, t) to the PDE (2) with
boundary/initial conditions (3)-(4) using only measurements
of y(t) and knowledge of v(t) and Ψ(x, t).

A. Observer structure

Let us preliminarily address the observer design problem
for the case of ω fulfilling Assumption 2.1 and known. To
construct an observer T̂ (x, t), consider first a copy of the
PDE dynamics (2)

∂tT̂ = σ∂xxT̂ − ωT̂ +Ψ (6)

defined for (x, t) ∈ [0, 1]×[0,+∞) with boundary conditions

T̂ (0, t) = C0

∂xT̂ (1, t) = v(t) + α(y(t)− T̂ (1, t))
(7)

where α > 0 is the output injection gain. The compatibility
conditions for the initialization of the observer T̂0(x) read
then as

T̂0(0) = T0(0) ∧ ∂xT̂0(x)|x=1 + αT̂0(1) = v(0) + αT0(1)

Setting eT (x, t) := T (x, t) − T̂ (x, t) and eT,0(x) :=
eT (x, 0), the error dynamics is governed by the PDE

∂teT = σ∂xxeT − ωeT
eT (0, t) = 0

∂xeT (1, t) = −αeT (1, t)
(8)

Remark 2.1: The well-posedness of the above error dy-
namics follows immediately from classical semigroup theory
arguments [17].
Next result addresses observer convergence in nominal con-
ditions, i.e. under the assumption that ω is constant and
known.

Proposition 2.1: Assume that T̂0(x) is smooth, and con-
sider the observer dynamics (6)-(7). For any α > 0, the
L2-norm of the error

∥T (·, t)− T̂ (·, t)∥L2

converges exponentially to zero, with a decay rate not smaller
than min{σα, σπ2/4}+ ω.

Proof. Consider the Lyapunov functional candidate

V (t) =
1

2

∫ 1

0

e2T dx

corresponding to 1
2∥eT ∥

2
L2 . We aim at diffentiating V (t)

along the error system solutions and, as the latter are mild
solutions thanks to the smoothness of initial and boundary
conditions, one is allowed to bring the derivative under the
integral sign, so that

V̇ (t) =

∫ 1

0

eT∂teT dx = σ

∫ 1

0

eT∂xxeT dx− ω

∫ 1

0

e2T dx

where the equation of the error system has been used. Let
us focus on the first term in the right-hand side. Performing
integration by parts and using the boundary conditions, one
has∫ 1

0

eT∂xxeT dx = eT∂xeT

∣∣∣1
0
−
∫ 1

0

(∂xeT )
2dx

= eT (1, t)∂xeT (1, t)− eT (0, t)∂xeT (0, t)︸ ︷︷ ︸
=0

−
∫ 1

0

(∂xeT )
2dx

= −α(∂xeT (1, t))
2 −

∫ 1

0

(∂xeT )
2dx

Now, recalling Poincaré-Wirtinger inequality [18, Remark
2.2], we have that

−α(∂xeT (1, t))
2 −

∫ 1

0

(∂xeT )
2dx ≤ −η

∫ 1

0

e2T dx

with

η = η(α) =


α α ∈

(
0,

π2

4

)
π2

4
α ≥ π2

4

Summarizing, we have shown that

V̇ (t) ≤ −(ση + ω)

∫ 1

0

e2T dx = −2(ση + ω)V (t)



thus yielding exponential convergence of V (t) with a decay
rate not smaller than 2(ση+ω) = 2(min{σα, σπ2/4}+ω).
The statement then follows by the simple observation that the
norm ∥eT ∥L2 satisfies the identity ∥eT ∥L2 =

√
2V (t)

1
2 . ♣

B. Sensitivity analysis
The previous result proves observer convergence in nomi-

nal conditions. Next we will investigate the sensitivity of the
error with respect to uncertainty in the coefficient ω. To this
end, consider a claimed value ω̃ to be used in the observer
state equation, which becomes

∂tT̂ = σ∂xxT̂ − ω̃T̂ +Ψ (9)

with boundary conditions left unchanged. Considering again
the Lyapunov functional V (t) for the error eT (x, t) and
following the same steps of the proof of Proposition 2.1,
we end up with the inequality

V̇ (t) ≤ −2σηV (t)− ω

∫ 1

0

TeT dx+ ω̃

∫ 1

0

T̂ eT dx

Now, adding and subtracting the same quantity ω̃
∫ 1

0
TeT dx

and using Young’s inequality, the latter can be rewritten as

V̇ (t) ≤ −2σηV (t)− ω̃

∫ 1

0

e2T dx+ (ω̃ − ω)

∫ 1

0

TeT dx

= −2(ση + ω̃)V (t) + (ω̃ − ω)

∫ 1

0

TeT dx

≤ −2(ση + ω̃)V (t)

+
|ω̃ − ω|

2

(
1

δ

∫ 1

0

T 2dx+ δ

∫ 1

0

e2T dx

)
= −(2ση + 2ω̃ − δ|ω̃ − ω|)V (t) +

|ω̃ − ω|
2δ

∫ 1

0

T 2dx

where δ > 0 is an arbitrary positive scalar. Notice that,
however, in order to keep the coefficient in first term on the
right-hand side negative, we must impose the upper bound
δ < 2(ση+ ω̃)/|ω̃−ω|. Based on the previous computations,
we can give the following corollary addressing the observer
sensitivity.

Corollary 2.1: Let ω > 0 be unknown, and consider the
observer (9) with some guess ω̃ > 0. Assume that a constant
Tmax > 0 exists such that the bound T (x, t) ≤ Tmax holds
for any x ∈ [0, 1] and any t ≥ 0. Then the error eT (x, t) is
ultimately bounded relative to the set

E := {eT ∈ L2(0, 1) : ∥eT ∥2L2 ≤ 4c0)}

where c0 =
|ω̃ − ω|2T 2

max

(ση + ω̃)2
. Furthermore, the convergence

towards the attractive set E is exponential, with a rate not
smaller than (ση + ω̃)/2.
Proof. From earlier derivations, using the upper bound on
T (x, t) and further rearranging terms, we have

V̇ (t) ≤ −(2ση + 2ω̃ − δ|ω̃ − ω|)V (t) +
|ω̃ − ω|

2δ

∫ 1

0

T 2dx

≤ −(ση + ω̃)V (t)

−
(
(ση + ω̃ − δ|ω̃ − ω|)V (t)− |ω̃ − ω|

2δ
T 2
max

)

The quantity in the brackets is non-negative whenever

V (t) ≥ |ω̃ − ω|T 2
max

2δ(ση + ω̃ − δ|ω̃ − ω|)
and, minimizing with respect to the positive parameter δ, one
gets the sharper condition

V (t) =
1

2
∥eT (·, t)∥2L2

≥ 2c0

which in turn implies that

V̇ (t) ≤ −(ση + ω̃)V (t) ∀ eT (·, t) ∈ Ec := L2(0, 1) \ E

The latter inequality guarantees global attractivity of the
bounded set E , with the claimed rate of exponential
convergence. ♣

III. MULTIPLE-MODEL ADAPTIVE SCHEME

The sensitivity analysis of the previous section suggests
to devise a method for reducing the uncertainty on the
perfusion coefficient ω so as to get better estimation results.
Standard adaptive control strategies, based on LaSalle’s
invariance principle, are not applicable in this case, due to
the nonlinearity appearing in the evaluation of the Lyapunov
function derivative, which depends on both the unknown
parameter ω and the full state T . Available approaches based
on backstepping can be used [12], but these come at the price
of introducing quite complex coordinate transformations.

In this work, we pursue an alternative way that hinges
on multiple-models [19], [20], which are well suited here
because, in light of Assumption 2.1, the unknown parameter
belongs to a bounded admissible range. Bearing this in mind,
let us consider a set of fixed values ωj ≥ 0, j = 1, ..., N for
some N ∈ N, with

ω1 < ω2 < · · · < ωN

ω1 ≤ ωmin, ωmax ≤ ωN

Accordingly, let us define a family of observers T̂ (j)(x, t)
with the structure (9) and with the choice ω̃ = ωj , that is

∂tT̂
(j) = σ∂xxT̂

(j) − ωj T̂
(j) +Q

T̂ (j)(0, t) = 0

∂xT̂
(j)(1, t) = v(t) + α(y(t)− T̂ (j)(1, t))

It is worth noticing that, for each observer within this family,
an ultimate bound for the corresponding estimation error is
provided by Corollary 2.1. Following the approach proposed
in [14], the idea is then to introduce an overall estimator

T̂ †(x, t) = p1(t)T
(1)(x, t) + · · ·+ pN (t)T (N)(x, t) (10)

obtained as dynamic convex combination of the observers
T (j)(x, t) with weights pj(t) being updated according to

ṗj(t) = −λ

(
1− e−µj(t)∑N

ℓ=1 pℓ(t)e
−µℓ(t)

)
pj(t) j = 1, ..., N

(11)
where µj(t) := υ|T (1, t) − T̂ (j)(1, t)|2, υ > 0, is the
(absolute) output error and λ > 0 is the adaptive gain.
The overall observer (10) corresponds to a weighted average
of the individual observers, whose weights adapt based on



the size of the associated output errors. Whenever one of
these errors is ultimately smaller than the others, with

lim sup
t→+∞

(µ⋆
j (t)− µℓ(t)) < 0 ∀ℓ ̸= j⋆,

one may expect the convergence of the weights to the values

lim
t→∞

pj⋆(t) = 1, lim
t→∞

pℓ(t) = 0 ∀ℓ ̸= j⋆,

so that (10) reduces to T̂ †(x, t) = pj⋆(t)T
(j⋆)(x, t)

(see [14, Theorem 1]). This means that T̂ (j⋆)(x, t) re-
sults being the best observer among the considered family
{T̂ (j)(x, t)}j=1,..,N , with respect to the inherent output error
function.

Remark 3.1: Invoking again Corollary 2.1, we can notice
that the finer the gridding of [ωmin, ωmax] is (or, equivalently,
the larger the number of models N is), the smaller the
ultimate set E associated to the best observer T̂ (j) gets.

IV. SIMULATIONS

A. Implementation

All simulation results in this paper have been obtained
in MATLAB using the pdepe built-in routine. Although
the solver is quite efficient at handling simple systems of
PDEs, it is not suited for encoding systems of PDEs (bio-heat
Equations, observers) and ODEs (dynamic weights). In our
companion paper [15] we propose an implementation scheme
based on neural networks. We consider here an alternative
and naive approach, consisting in treating the dynamics of
weights as a degenerate PDE, i.e., with uniform spatial de-
pendency, which allows them to be embedded in the system
of PDEs. Despite the benefits of a simpler implementation,
this method suffers however from some numerical issues that
will be discussed further on, thus indicating the learning-
based procedure proposed in [15] as the most promising and
suitable for real-time applications.

Artificial PDE formulation for the weights: The weights
pj(t) are naturally governed by the ordinary differential
equations (11). However, it can be observed that, when
using a built-in PDE solver such as pdepe in MATLAB,
one may encounter some issues with getting in real time
the output feedback from the PDEs’ solutions needed to
implement the ODEs. To overcome the problem, one may
use a partial differential version of (11), obtained by intro-
ducing an artificial dependency on the spatial variable, and
which delivers equivalent solutions. This can be done, for
example, by defining pj(x, t), j = 1, ..., N , as the solutions
to the following system of nonlinear parabolic PDEs with
homogenous Neumann conditions

∂tpj(x, t) = γ∂xxpj(x, t)

−λ

(
1− e−µj(t)∑N

ℓ=1 pℓ(x, t)e
−µℓ(t)

)
pj(x, t)

∂xpj(0, t) = ∂xpj(1, t) = 0

where γ > 0 and initialization pj(x, 0) are independent of
the spatial variable x for any j = 1, ..., N .

B. Results
Consider the bio-heat Equation (1) for a muscular tissue

without an internal source, i.e. setting Q ≡ 0, with coeffi-
cients taken accordingly to [21], as reported in Table I.

TABLE I: Parameters of the bio-heat Equation

Parameter ϱ, ϱb c, cb κeff Ta

Value 1050, 1043 3639, 3825 5 37
Unit [kg/m3] [J/(kg ·K)] [W/(m·K)] ◦C

The blood perfusion rate is wb = 2.22 ·10−3 [s−1], with
an admissible range [wmin, wmax] = [0.43·10−4, 3.8·10−3].
A spatial rescaling has been applied so that the length of the
interval [0, 1] corresponds to 5 cm, whereas the simulation
time interval has been restricted to [0, tf ] with tf = 1800 s.
Initial and boundary conditions have been chosen as follows:

T (x, 0) = Ta + q0
x4

4 + βx(x− 1)2 ∀x ∈ [0, 1]

T (t, 0) = Ta ∀t ≥ 0

∂xT (t, 1) = q0 ∀t ≥ 0

with q0 = 16 and β = 15. Notice that the equation can be
brought into the model form (2) by setting

σ :=
d2κeff

ϱc
, ω :=

ϱbwbcb
ϱc

where d = 20 is the rescaling factor, and applying a change
of coordinates as sketched in Remark 1.1. The numerical
solution of the equation is depicted in Figure 1.

Example 4.1: We begin the illustration of the results on
observer design by considering the case of known perfusion
rate wb. Following the construction given in Section II-A, we
consider an observer in the form (6), with output injection
gain α = 30 and initial condition

T̂ (x, 0) = Ta + q0
x4

4
(12)

As expected, the observer T̂ (x, t) successfully achieves the
reconstruction of the temperature T (x, t) over the whole do-
main [0, 1]. The temperature profile along with the estimated

Fig. 1: Numerical solution of the bio-heat Equation
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temperature profile at the final time tf = 1800 s are shown
in Figure 2, while Figure 3 shows the exponential decay of
the L2-norm of the estimation error T (x, t)− T̂ (x, t).

Example 4.2: Let us now assume that wb is unknown, and
consider the multiple-model approach proposed in Section III
with N = 8 models computed based on a uniform gridding
{w1, w2, . . . , w8} of the range [wmin, wmax], so that the
closest value to the actual perfusion rate is w5. Each model
T̂ j(x, t), j = 1, 2, ..., 8, has been initialized as in (12) and
implemented using the artificial PDE formulation for the
dynamics of the weights pj described in Section IV-A with
parameters

γ = 10, λ = 200, υ = 500

In this case, for computational reasons (see also the following
Remark 4.1), it has been necessary to increase the output
injection gain in the observers up to α = 3 · 104. Based
on the dynamic weights pj(x, t), we have evaluated the
multiple-model adaptive observer T̂ †(x, t) defined as in
(10). The comparison of system solution T (x, t), observers
T̂ (j)(x, t) and MM adaptive observer T̂ †(x, t) at the final
time tf = 1800 s is proposed in Figure 4, and a zoomed
version for helping visualization of results is given in Fig-
ure 5. While the system and the observers coincide at the

boundary points, deviations arise inside the domain due to
the wrongly guessed values of wb. However, as clearly visible
in Fig. 5, the observer T̂ (4)(x, t) is close to the actual system,
which is indeed quite accurately reconstructed by the MM
adaptive observer T̂ †(x, t). The latter is built according to the
dynamic weights pj(x, t), whose time evolution is reported
in Figure 6. Despite a steady-state condition is not reached,
one can see that the largest weights are those corresponding
to the values w4 and w5 lying “around” the actual value wb,
thus confirming that a correct estimation of the perfusion
rate is achieved. Finally, the evolution of the L2-norm of
the error T (x, t)− T̂ †(x, t) is depicted in Figure 7: after the
initial descent, corresponding to the observer transient, the
error norm reaches a steady-state value which is, as expected,
small but not zero.

Remark 4.1: Due to the somewhat limited computational
capabilities of the pdepe routine, not all the choices for
system parameters were feasible. For example, as already
mentioned, picking a small injection gain would make the
solver incurring in numerical instabilities. For the same
reason, the learning rate λ of dynamic weights, is bounded to
be sufficiently small in the current simulation setup, which
results in a fairly slow adaptation. In the companion pa-
per [15], we propose a deep learning approach for efficient
implementation of the coupled PDE/ODE dynamics of the
multiple-model observer. In short, a set of deep neural
networks, pre-trained with different values of the perfusion
rate wb, implement the dynamics of the observers, which,
taking the estimation error as input, are able to predict the
temperature in the whole domain of interest in real-time
without incurring in the above mentioned numerical issues.

V. CONCLUSIONS

Observer design for a class of 1D parabolic linear reaction-
diffusion equations has been considered, with the Pennes’
bio-heat Equation as main application case. Assuming uncer-
tainty in the reaction coefficient, a multiple-model adaptive
scheme, already proven to be efficient for finite-dimensional
systems, has been extended to the considered class of linear
1D PDEs with boundary outputs, with the aim of simulta-
neously estimating the system solution and recovering the
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uncertain parameter. The performance of the method, along
with some potential implementation issues, are illustrated
through MATLAB simulations. The criticalities highlited by
the simulation campain led [15] to an alternative implemen-
tation relying on deep neural networks. Future work will
be devoted to generalizing the observer design to higher
dimensional equations, and to considering possibly time-
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varying uncertain coefficients, following an approach similar
to the one proposed in [22].
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