Reconfigurable processors are hardware architectures that allow for the dynamic configuration of processing resources to optimize performance and power consumption, using partial reconfiguration to modify a portion of the design or update it without affecting the entire system. In this work, we present an automatic reconfiguration technique that leverages machine learning (ML) algorithms to automatically select the optimal configuration of a general-purpose hardware accelerator according to the workload and reconFigure the architecture at run-time. The problem is formulated as a Contextual Bandit (CB) case using the Linear Upper Confidence Bound (LinearUCB) algorithms and verified using the RISC-V Klessydra family cores as a case of study.

Automatic hardware accelerators reconfiguration through linearUCB algorithms on a RISC-V processor / Angioli, Marco; Barbirotta, Marcello; Mastrandrea, Antonio; Jamili, Saeid; Olivieri, Mauro. - (2023), pp. 169-172. (Intervento presentato al convegno 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Valencia; Spain) [10.1109/prime58259.2023.10161944].

Automatic hardware accelerators reconfiguration through linearUCB algorithms on a RISC-V processor

Marco Angioli
;
Marcello Barbirotta;Antonio Mastrandrea;Saeid Jamili;Mauro Olivieri
2023

Abstract

Reconfigurable processors are hardware architectures that allow for the dynamic configuration of processing resources to optimize performance and power consumption, using partial reconfiguration to modify a portion of the design or update it without affecting the entire system. In this work, we present an automatic reconfiguration technique that leverages machine learning (ML) algorithms to automatically select the optimal configuration of a general-purpose hardware accelerator according to the workload and reconFigure the architecture at run-time. The problem is formulated as a Contextual Bandit (CB) case using the Linear Upper Confidence Bound (LinearUCB) algorithms and verified using the RISC-V Klessydra family cores as a case of study.
2023
18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)
contextual bandits; LinearUCB; reconfigurable hardware accelerators; reinforcement learning; runtime reconfiguration
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Automatic hardware accelerators reconfiguration through linearUCB algorithms on a RISC-V processor / Angioli, Marco; Barbirotta, Marcello; Mastrandrea, Antonio; Jamili, Saeid; Olivieri, Mauro. - (2023), pp. 169-172. (Intervento presentato al convegno 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Valencia; Spain) [10.1109/prime58259.2023.10161944].
File allegati a questo prodotto
File Dimensione Formato  
Angioli_Automatic Hardware_2023.pdf.pdf

solo gestori archivio

Note: Articolo in PDF
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 224.17 kB
Formato Adobe PDF
224.17 kB Adobe PDF   Contatta l'autore
Angioli_Automatic Hardware_Indice_2023.pdf

solo gestori archivio

Note: Indice
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 155.54 kB
Formato Adobe PDF
155.54 kB Adobe PDF   Contatta l'autore
Angioli_Automatic Hardware_Frontespizio_2023.pdf

solo gestori archivio

Note: Frontespizio
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 692.94 kB
Formato Adobe PDF
692.94 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact