Reconfigurable processors are hardware architectures that allow for the dynamic configuration of processing resources to optimize performance and power consumption, using partial reconfiguration to modify a portion of the design or update it without affecting the entire system. In this work, we present an automatic reconfiguration technique that leverages machine learning (ML) algorithms to automatically select the optimal configuration of a general-purpose hardware accelerator according to the workload and reconFigure the architecture at run-time. The problem is formulated as a Contextual Bandit (CB) case using the Linear Upper Confidence Bound (LinearUCB) algorithms and verified using the RISC-V Klessydra family cores as a case of study.
Automatic hardware accelerators reconfiguration through linearUCB algorithms on a RISC-V processor / Angioli, Marco; Barbirotta, Marcello; Mastrandrea, Antonio; Jamili, Saeid; Olivieri, Mauro. - (2023), pp. 169-172. (Intervento presentato al convegno 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Valencia; Spain) [10.1109/prime58259.2023.10161944].
Automatic hardware accelerators reconfiguration through linearUCB algorithms on a RISC-V processor
Marco Angioli
;Marcello Barbirotta;Antonio Mastrandrea;Saeid Jamili;Mauro Olivieri
2023
Abstract
Reconfigurable processors are hardware architectures that allow for the dynamic configuration of processing resources to optimize performance and power consumption, using partial reconfiguration to modify a portion of the design or update it without affecting the entire system. In this work, we present an automatic reconfiguration technique that leverages machine learning (ML) algorithms to automatically select the optimal configuration of a general-purpose hardware accelerator according to the workload and reconFigure the architecture at run-time. The problem is formulated as a Contextual Bandit (CB) case using the Linear Upper Confidence Bound (LinearUCB) algorithms and verified using the RISC-V Klessydra family cores as a case of study.File | Dimensione | Formato | |
---|---|---|---|
Angioli_Automatic Hardware_2023.pdf.pdf
solo gestori archivio
Note: Articolo in PDF
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
224.17 kB
Formato
Adobe PDF
|
224.17 kB | Adobe PDF | Contatta l'autore |
Angioli_Automatic Hardware_Indice_2023.pdf
solo gestori archivio
Note: Indice
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
155.54 kB
Formato
Adobe PDF
|
155.54 kB | Adobe PDF | Contatta l'autore |
Angioli_Automatic Hardware_Frontespizio_2023.pdf
solo gestori archivio
Note: Frontespizio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
692.94 kB
Formato
Adobe PDF
|
692.94 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.