In multi-robot reinforcement learning the goal is to enable a group of robots to learn coordinated behaviors from direct interaction with the environment. Here, we provide a comparison of two main approaches designed for tackling this challenge; namely, independent learners (IL) and joint-action learners (JAL). We evaluate these methods in a multi-robot cooperative and adversarial soccer scenario, called 2 versus 2 free-kick task, with simulated NAO humanoid robots as players. Our findings show that both approaches can achieve satisfying solutions, with JAL outperforming IL.

Cooperative multi-agent deep reinforcement learning in soccer domains / CATACORA OCANA, JIM MARTIN; Capobianco, R.; Riccio, F.; Nardi, D.. - 4:(2019), pp. 1865-1867. ((Intervento presentato al convegno 18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019 tenutosi a Montreal; Canada.

Cooperative multi-agent deep reinforcement learning in soccer domains

Ocana Jim Martin Catacora.
;
Capobianco R.
;
Riccio F.
;
Nardi D.
2019

Abstract

In multi-robot reinforcement learning the goal is to enable a group of robots to learn coordinated behaviors from direct interaction with the environment. Here, we provide a comparison of two main approaches designed for tackling this challenge; namely, independent learners (IL) and joint-action learners (JAL). We evaluate these methods in a multi-robot cooperative and adversarial soccer scenario, called 2 versus 2 free-kick task, with simulated NAO humanoid robots as players. Our findings show that both approaches can achieve satisfying solutions, with JAL outperforming IL.
18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
Deep reinforcement learning; Multi-robot; Robot soccer
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Cooperative multi-agent deep reinforcement learning in soccer domains / CATACORA OCANA, JIM MARTIN; Capobianco, R.; Riccio, F.; Nardi, D.. - 4:(2019), pp. 1865-1867. ((Intervento presentato al convegno 18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019 tenutosi a Montreal; Canada.
File allegati a questo prodotto
File Dimensione Formato  
Ocana_Cooperative_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1381509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact