The problem of minimizing the transfer time along a given Cartesian path for redundant robots can be approached in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parameterized joint path. In this framework, multiple suboptimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. We propose a solution method that works at the acceleration level, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. Several numerical results obtained on different robot systems demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with our method is reasonably close to the global time-optimal solution along same Cartesian path. Experimental results on a KUKA LWR IV are also reported, showing the tracking control performance on the executed motions.
Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level / AL KHUDIR, Khaled; De Luca, Alessandro. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - ELETTRONICO. - 3:4(2018), pp. 3553-3560. [10.1109/LRA.2018.2853806]
Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level
AL KHUDIR, KHALED;De Luca, Alessandro
2018
Abstract
The problem of minimizing the transfer time along a given Cartesian path for redundant robots can be approached in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parameterized joint path. In this framework, multiple suboptimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. We propose a solution method that works at the acceleration level, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. Several numerical results obtained on different robot systems demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with our method is reasonably close to the global time-optimal solution along same Cartesian path. Experimental results on a KUKA LWR IV are also reported, showing the tracking control performance on the executed motions.File | Dimensione | Formato | |
---|---|---|---|
AlKhudir_Postprint_Faster-Motion-on-Cartesian_2018.pdf
accesso aperto
Note: DOI: 10.1109/LRA.2018.2853806
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
812.78 kB
Formato
Adobe PDF
|
812.78 kB | Adobe PDF | |
AlKhudir_Faster-Motion-on-Cartesian_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.