
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED IN JUNE 2018 1

Faster Motion on Cartesian Paths Exploiting
Robot Redundancy at the Acceleration Level

Khaled Al Khudir and Alessandro De Luca

Abstract—The problem of minimizing the transfer time along
a given Cartesian path for redundant robots can be approached
in two steps, by separating the generation of a joint path
associated to the Cartesian path from the exact minimization of
motion time under kinematic/dynamic bounds along the obtained
parametrized joint path. In this framework, multiple sub-optimal
solutions can be found, depending on how redundancy is locally
resolved in the joint space within the first step. We propose a
solution method that works at the acceleration level, by using
weighted pseudoinversion, optimizing an inertia-related criterion,
and including null-space damping. Several numerical results
obtained on different robot systems demonstrate consistently
good behaviors and definitely faster motion times in comparison
with related methods proposed in the literature. The motion time
obtained with our method is reasonably close to the global time-
optimal solution along same Cartesian path. Experimental results
on a KUKA LWR IV are also reported, showing the tracking
control performance on the executed motions.

Index Terms—Optimization and Optimal Control, Motion
Control, Trajectory Planning, Redundant Robots, Dynamics.

I. INTRODUCTION

FOLLOWING a prescribed geometric path with an end-
effector tool is one of the most common tasks that robot

manipulators perform in industrial applications. The path only
determines the task geometry in the Cartesian space, leaving
the velocity motion profile along the path unspecified. In such
cases, it is often desirable to traverse the path in the least
possible time while not violating actuator limits.

Several algorithms have been proposed for the time-optimal
path following problem under dynamic constraints, starting
with the seminal works [1], [2], refined later in [3], [4]. The
original idea was to work in the phase plane defined by the
path parameter and its first time derivative. In [5], the problem
has been formulated in terms of convex optimal control, taking
advantage of general numerical algorithms. More recently,
an efficient and stable algorithmic tool, called TOPP (Time-
Optimal Path Parameterization), has been implemented in [6],
solving the problem under dynamic as well as kinematic
constraints. All these results apply both to Cartesian and joint
paths, but in the first case it is implicitly assumed that the
robot has as many joints as strictly needed for moving along
the desired Cartesian path (non-redundancy).

A manipulator is kinematically redundant for a given task
if the number n of its degrees of freedom (viz. joints) is

Manuscript received: February 24, 2018; revised May 22, 2018; accepted
June 18, 2018. This paper was recommended for publication by Editor P.
Rocco upon evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the Dipartimento di Ingegneria Informatica, Automat-
ica e Gestionale, Sapienza Università di Roma, Via Ariosto 25, 00185 Roma,
Italy (e-mail: alkhudir@diag.uniroma1.it; deluca@diag.uniroma1.it).

Digital Object Identifier (DOI): see top of this page.

larger than the dimension m of the task, or n > m. A
general and efficient global solution to the time-optimal con-
trol problem along Cartesian paths in kinematically redundant
robots has not been found yet. In [7], the problem was
addressed by Pontryagin’s maximum principle, looking for
regular trajectories in an extended state space. An approach
based on decomposition into non-redundant and redundant
joints was introduced in [8]. These techniques are able to
generate optimal solutions mainly for the case of degree of
redundancy n−m = 1. A non-convex numerical method with
null-space augmentation is proposed in [9].

A different way to tackle the problem is to separate it into
two steps: first, a specific joint path is generated from the
assigned Cartesian path, typically by local (or semi-global)
inverse differential methods; then, motion time is exactly
minimized under the given kinematic/dynamic bounds along
the unique joint path thus found. This approach was pioneered
in [10], and later in [11], providing satisfactory results. In
their first step, robot redundancy was locally exploited using
first-order differential inverse kinematic solutions that, e.g.,
increase robot manipulability along the tangent direction to
the Cartesian path. Indeed, there are infinite ways to generate
a path in the joint space within the first step of this procedure.
The challenge is to obtain paths along which the optimal
selection of the timing law (say, by the TOPP algorithm)
achieves the fastest possible motion transfer. For this, a num-
ber of additional dynamic issues, such as those considered
in [12] and [13], should be conveniently incorporated in the
differential inversion of the Cartesian path.

In this paper, we address the time-optimal trajectory plan-
ning along a Cartesian path for a kinematically redundant
robot with a two-step procedure. We propose to generate
a sequence of joint configurations by means of a second-
order differential inverse kinematics scheme, using weighted
pseudoinversion, optimizing locally an inertia-related criterion,
and including judiciously a damping action in the null space of
the task. The obtained configurations are then interpolated with
a parameterized path in the joint space, and an exact minimum
time solution is computed using the TOPP algorithm. In case
the initial robot configuration is not assigned a priori, we
include also a kinematic optimization scheme to find the best
initial joint configuration corresponding to the starting point
of the Cartesian path.

The paper is organized as follows. The formulation of
the time-optimal planning problem on a parametrized joint
path and its basic solution algorithm are reviewed in Sec. II.
Section III presents the core of the method, moving ideas that
exploit robot redundancy from the first- to the second-order
differential level. Section IV reports comparative numerical

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED IN JUNE 2018

results for a 3R planar arm performing two-dimensional tasks.
We provide also a procedure in order to evaluate the distance
between solutions obtained with a two-step approach and
the global time-optimal motion computed along the same
Cartesian path, using an alternative nonlinear programming
method. Experimental results are reported in Sec. V for a
KUKA LWR IV robot executing positional tasks (also shown
in the accompanying video). Conclusions and future work are
summarized in Sec. VI.

II. TIME-OPTIMAL PLANNING ON A GEOMETRIC PATH

We briefly review the basic formulation of the time-optimal
planning on a parametrized joint path as in [1], [6].

The dynamic model of a rigid robot with n degrees of
freedom is given by

M(q)q̈ + S(q, q̇) q̇ + g(q) = τ , (1)

where q ∈ Rn and τ ∈ Rn denote joint configurations and
torques, respectively, M(q) is the inertia matrix, S(q, q̇)q̇ ac-
counts for the centrifugal and Coriolis terms (factorized using
the Christoffel symbols), and g(q) represents the gravitational
torques. Matrix S depends linearly on the velocity q̇. Assume
that robot motion in the joint space is constrained to a given
path that is continuously parametrized by a scalar s as a (non-
decreasing) function of time t, or

q = q(s), s ∈ [0, send] , s = s(t), t ∈ [0, tend] . (2)

Differentiating (2) once and twice with respect to time yields

q̇ = q′ṡ, q̈ = q′s̈+ q′′ṡ2, (3)

where a dot ˙() and a prime ()′ denote differentiation with
respect to time t and to parameter s. The robot is subject to
bounds on the joint torques

τmin ≤ τ (t) ≤ τmax, ∀t ∈ [0, tend], (4)

where τmax and τmin (usually, equal to −τmax) are constant
vectors, and inequalities are to be intended component-wise.
Substituting (2) and (3) into (1) and (4), and rearranging the
terms, leads to

τmin ≤ a(s)s̈+ b(s)ṡ2 + g(s) ≤ τmax (5)

where a = M(q)q′, b = M(q)q′′ + S(q, q′)q′, and g is
again the gravity torque vector (all arguments are evaluated
using (2) and (3)). As a result, a trajectory q(s(t)) will be
feasible if and only if the following bounds on the pseudo-
acceleration s̈ are satisfied along the whole path

α(s(t), ṡ(t)) ≤ s̈(t) ≤ β(s(t), ṡ(t)), ∀s ∈ [0, send] . (6)

For each (s, ṡ), the upper and lower acceleration bounds in (6)
are defined as

α(s, ṡ) = max
i
αi(s, ṡ) and β(s, ṡ) = min

i
βi(s, ṡ). (7)

The expressions of αi and βi depend on the sign of ai(s). In
particular, for i = 1, . . . , n:

r if ai(s) > 0, then

 αi =
τmin
i − gi(s)− bi(s)ṡ2

ai(s)
,

βi =
τmax
i − gi(s)− bi(s)ṡ2

ai(s)
;

r if ai(s) < 0, then

 αi =
−τmax

i + gi(s)+ bi(s)ṡ
2

|ai(s)| ,

βi =
−τmin

i + gi(s)+ bi(s)ṡ
2

|ai(s)| ;r if ai(s) = 0, then s is a zero-inertia point.

The last case is a dynamic singularity that should be handled
separately [3], [4]. From (6), a maximum velocity curve
MVCt(s) is imposed in the (s, ṡ) plane, defined by

MVCt(s)

=

{
min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)}, if α(s, 0) ≤ β(s, 0),

0, if α(s, 0) > β(s, 0).

Kinematic constraints (e.g., joint velocity limits) can also be
considered [14]. Assuming symmetric bounds, we have for the
velocity of joint i, i = 1, . . . , n:

−q̇max
i ≤ q̇i ≤ q̇max

i ⇒ ṡmax
i (s) =

q̇max
i

|q′i(s)|
. (8)

The overall bound on ṡ will be

ṡmax(s) = min
i
ṡmax
i (s), ∀s ∈ [0, send] . (9)

Equation (9) induces another maximum velocity curve, de-
noted MVCv(s). As a result, every feasible timing law s =
s(t) must remain below the curve in the phase plane (s, ṡ)
defined by MVC = min{MVCt,MVCv}.

Based on Pontryagin Maximum Principle, the optimal tra-
jectory in the (s, ṡ) plane that minimizes the rest-to-rest
motion time T is given by a control law of the bang-bang
type. The pseudo-acceleration s̈ follows alternatively α or β,
while the profile of ṡ should always stay below the maximum
velocity curve MVC. From (6) and (9), it can be shown that at
least one joint is saturated at any time either to its torque bound
or to its velocity bound. The optimal timing law s∗(t) and
the associated minimum time T ∗ can be found using TOPP,
a complete and robust algorithm presented in [6]. From this,
having also (ṡ∗(t), s̈∗(t)), the time profiles q̇(t) and q̈(t) are
evaluated using (3) and the needed joint torque is computed
algebraically using (1).

III. EXPLOITING ROBOT REDUNDANCY

A. First-order schemes

Let a parametrized path in the m-dimensional Cartesian (or
task) space be assigned as

p = p(s), s ∈ [0, send], (10)

and let p = k(q) be task kinematics for the considered
manipulator. If a q0 ∈ Rn is assigned as initial configuration
(q(0) = q0), it should satisfy k(q0) = p(0) = p0. Dropping

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AL KHUDIR AND DE LUCA: FASTER MOTION ON CARTESIAN PATHS EXPLOITING ROBOT REDUNDANCY 3

dependencies, the first-order differential kinematics in the
parameter space s is

p′ = Jq′, J =
∂k

∂q
. (11)

The simplest first-order differential inverse kinematics is given
by

q′ = J†p′, (12)

where J† denotes the Moore-Penrose pseudoinverse of J . A
parameterized joint path q = q(s) can be generated by numer-
ical integration of (12), starting from q0 and evaluated over
discrete samples of the parameter s, followed by interpolation
of the obtained data points in the joint space with a class of
smooth functions (e.g., cubic splines).

1) Projected Gradient at the Velocity level (PGV): In
order to include an auxiliary optimization in the redundancy
resolution step, the basic scheme (12) is modified as

q′ = J†p′ − δ(I − J†J)∇qh, (13)

where P = I − J†J is the orthogonal projection matrix in
the null space of J , ∇qh is the gradient of a configuration-
dependent objective function h(q) to be minimized, and the
scalar δ ≥ 0 is a suitable stepsize.

In order to improve the acceleration/deceleration capabilities
of the robot end-effector along the specified Cartesian path, the
following objective function was used in [10]

h(q) = tT (MJ†)TMJ†t, (14)

with t ∈ Rm being a unit vector along the tangent direction
to the path. This will help in locally generating a joint path
along which the robot will expose a reduced inertial load in the
task space (minimum distance to the surface of the dynamic
manipulability ellipsoid defined in [15]).

2) Weighted Pseudoinverse at the Velocity level (WPV): As
an alternative to adopting a null-space projection scheme, we
could use a weighted pseudoinverse at the velocity level

q′ = J†Qp
′. (15)

Assuming full rank for Jacobian J , a regular weighted pseu-
doinverse in (15) takes the form

J†Q = Q−1JT (JQ−1JT)−1. (16)

Considering symmetric bounds on the joint torques, the use
of a symmetric matrix Q = (L−1M)TL−1M > 0, with
a diagonal scaling matrix L = diag{τmax

1 , . . . , τmax
n }, was

proposed in [11]. Following the pseudo-velocity (15) will limit
the motion of those joints that have larger inertia-to-maximum
torque ratios. A scalar parameter γ ≥ 0 can be added to the
weighting matrix Q as

Qγ = exp(γ lnQ), (17)

where exp(.) and ln(.) compute the matrix exponential and
the principal matrix logarithm, respectively. For γ = 0, the
simple psoudinverse solution (12) is used, while for γ = 1 the
weighted pseudoinverse (16) is obtained.

B. Second-order scheme

Instead of using first-order differential inverse kinematics
solutions as in (13) and (15), in the first step of our minimum-
time planning problem we propose to exploit redundancy at the
second-order (pseudo-acceleration) level. Differentiating (11)
w.r.t. the parameter s gives

p′′ = Jq′′ + J ′q′, J ′ =
dJ

ds
. (18)

Using the weighting matrix in (17), the second-order dif-
ferential inverse kinematics can be written as a weighted
pseudoinversion with a null-space term as

q′′ = J†Qγ

(
p′′ − J ′q′

)
+
(
I − J†Qγ

J
)
q′′0 , (19)

where q′′0 ∈ Rn is a preferred pseudo-acceleration vector in
the joint space. We will label this solution as ACC.

To determine the preferred pseudo-acceleration q′′0 , similar
techniques as those introduced in [10] and [16] will be used.
For the general case of different bounds on the joint torque
components, it is useful to use a normalization. Assume that
q̇ = 0, so that velocity-dependent terms vanish, and that
gravitational terms are neglected in (1). UsingQγ as weighting
matrix in the pseudoinverse, the normalized joint torques τ̃ in
the time domain can be written as

τ̃ = L−1Mq̈ = L−1MJ†Qγ
p̈. (20)

Consequently, the associated dynamic manipulability ellipsoid
in the Cartesian space will be

p̈TJ†
T

Qγ
QJ†Qγ

p̈ ≤ 1. (21)

To improve the acceleration/deceleration capabilities of the
robot end effector along the Cartesian path, it is useful to
minimize the quantity

f(q) = tTJ†
T

Qγ
QJ†Qγ

t, (22)

with t ∈ Rm defined as in (14). The preferred vector q′′0 in (19)
is then chosen as

q′′0 = −δ1∇qf −Dq′, (23)

where δ1 ≥ 0 is a scalar gain and D is a n × n diagonal,
positive semi-definite matrix. The second term in (23) is a
damping term on the pseudo-velocity, which guarantees that
bounded displacements are generated in the joint space. This
property is similar to the known effect of null-space damping
in the time domain, needed for stabilizing and smoothing joint
trajectories when redundancy is resolved at the acceleration
level, see, e.g. [17].

In the present framework, the choice of both δ1 and D
turns out to be critical in determining the total length of the
generated joint path, and thus indirectly also the achievable
minimum time associated to the path. Intuitively, a too small
damping matrix D (or no damping at all) will lead to a
potential drift or wandering of the joint path associated to
the original Cartesian path. Conversely, if the damping action
is too strong, joint reconfigurations intended to optimize the
objective function (22) will be penalized. Similarly, the choice
of δ1 should balance the length of the path generated in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED IN JUNE 2018

joint space vs. the efficacy in the auxiliary optimization of
f(q). For handling this trade off, the following bounds are
imposed to δ1:

0 ≤ δ1 ≤ min

{
δ2
‖J†Qγ

(p′′ − J ′q′)‖

‖(I − J†Qγ
J)∇qf‖

, δ1,max

}
, (24)

with δ2 ∈ [0, 1]. Finally, in order to avoid numerical drifts
during calculations, a stabilizing PD term on the (spacial) task
error can be added to (19), obtaining

q′′ = J†Qγ

(
p′′ − J ′q′ +Kde

′ +Kpe
)

+ (I − J†Qγ
J) q′′0 ,

(25)
where Kp > 0 and Kd > 0 are diagonal gain matrices,
e(s) = p(s)− k(q(s)) and e′(s) = p′(s)− J(q(s))q′(s).

With the second-order ACC method, a parameterized path
q = q(s) in the joint space will be generated by double
numerical integration of (25), used together with (23) and (22).
The second step of the minimum-time planning procedure is
identical to that of first-order schemes, e.g., PGV or WPV.

C. Finding an initial configuration

To start a first- or a second-order redundancy resolution
scheme, either a consistent initial configuration q(0) = q0 is
assigned, or it should be determined so as to match the end-
effector path at the start, i.e., k(q(0)) = p(0) = p0. Indeed,
being the robot redundant, there is an infinite number of such
initial robot configurations. To find the most efficient q0 for
our motion task, a preliminary kinematic control scheme is
used in the time domain, similar to (25) in the space domain,

q̈ = J†Qγ
(−J̇ q̇ −Kdṗ+Kpe0) + (I − J†Qγ

J)q̈0, (26)

with q̈0 = −δ1∇qf − Dq̇, f(q) computed as in (22),
e0 = p0 − k(q), and ṗ = Jq̇. In this preliminary phase,
the robot may start from any configuration, but typically one
still corresponding to the initial point of the Cartesian path
(i.e., with ‖e0‖ = 0). Equation (26) is then integrated forward
until ‖q̇‖ < ε, a specific threshold set, e.g., to 10−3. The robot
joints will move mainly according to the null-space projection
term in (26), while the first term is used to keep the robot
end-effector in the initial Cartesian position.

For the second-order scheme (25), we need in addition a
suitable initial pseudo-velocity q′(0) = q′0. Using the available
q0, this can be computed as

q′(0) = J†Qγ
(q0)p′(0)− δ

(
I − J†Qγ

(q0)J(q0)
)
∇qf(q0).

(27)
The overall computational scheme for our proposed method is
shown in Fig. 1.

IV. SIMULATION RESULTS FOR A 3R PLANAR ARM

The proposed solution ACC in (19) and the methods WPV
in (15) and PGV in (13) have been implemented in MATLAB
for a thorough comparison of results via simulation. For this,
we considered a 3R planar arm (n = 3) with links of equal
length l = 0.5 m, uniformly distributed mass ml = 1 kg, and
moment of inertia Il = mll

2/12. The end-effector position
(m = 2) should follow a path on the horizontal plane, so that

Initial Cartesian
point p0 = p(0)

Initial Cartesian
pseudo-velocity p’0 = p’(0)

Initial configuration
q0 = q(0) via eq. (26)

Initial pseudo-velocity
q’0 = q’(0) via eq. (27)

Cartesian path
p = p(s)

Pseudo-acceleration
q’’(s) via eq. (25)

Tracing the sampled
path with s = [0, send]

∬

q = q(s)

Robot kinematic &
dynamic constraints

TOPP
Time-optimal
joint trajectory

Joint interpolation
by cubic splines

Sampled joint data

Fig. 1: The overall scheme for the proposed ACC solution.

the degree of redundancy is n−m = 1. Torque and velocity
limits have been set respectively to ±20 Nm and ±10 rad/s,
for all three joints.

In order to compare the obtained results with a global
time-optimal solution on a Cartesian path, we followed the
procedure in Fig. 2. We first formulate a point-to-point (PTP)
minimum time problem for a given initial configuration q0,
a desired final end-effector position pf , zero initial/final joint
velocities (q̇0 = q̇f = 0), and robot dynamic and kinematic
limits (4) and (8). The resulting nonlinear programming (NLP)
problem is solved by a numerical method based on direct
collocation [17], yielding a joint trajectory q∗(t) and global
minimum time T ∗. Next, we associate to this motion the
resulting Cartesian path, suitably expressed in a parametrized
form p(s). Finally, this will be the input to two-step methods
that handle robot redundancy. They will generate solution
trajectories q∗method(t) and associated motion times T ∗method,
with method = {ACC, WPV, PGV}, and the results can be
compared to each other and to the global minimum time
solution on the same Cartesian path.

As a matter of fact, this fair procedure is needed since it
is still prohibitive in general to address by numerical methods
the global minimum time problem for redundant robots along

1) NLP problem solved with
 direct collocation method

 p(s)

direct kinematics
from sampled data q*

+
Cartesian interpolation

with cubic splines

PTP robot motion
in minimum time T,

initial configuration q0,
final position pf = p(T),

and aaaaaaaa

!

˙ q 0 = ˙ q f = 0

!

q *(t)

!

T *

ACC, WPV, or PGV
inversion method

+
TOPP (min time on
resulting joint path)

2) Association of a desired
 parametrized Cartesian path

3) Two-step approach for faster
motion on Cartesian path

!

qmethod
* (t)

!

Tmethod
*

Fig. 2: Comparison procedure between the global time-optimal
solution and the solutions obtained on the same Cartesian path
with two-step methods for redundant robots.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AL KHUDIR AND DE LUCA: FASTER MOTION ON CARTESIAN PATHS EXPLOITING ROBOT REDUNDANCY 5

TABLE I: Motion tasks for the 3R planar arm.

Initial configuration q0 [rad] Final Cartesian position pf [m]

Task 1 (3π/8, π/4,−π/4)T (-0.4,0.8)
Task 2 (π/4, π/4, π/4)T (-0.4,0.4)
Task 3 (π/4, π/4, π/4)T (0,-1)

TABLE II: Minimum motion times [s] for the 3R planar arm,
using global optimization and two-step solution methods (the
best parameters used for each method are indicated).

Direct
collocation

ACC
{γ, δ2, δ1,max,D}

WPV
{γ}

PGV
{δ}

Task 1 0.2499 0.2689
{0.655, 1, 210, 2I}

0.3357
{0.5}

0.4394
{0}

Task 2 0.2699 0.3021
{1, 0.8, 3500, 160I}

0.3100
{1}

0.3867
{0.1}

Task 3 0.4415 0.5332
{0, 0.6, 300, 16I}

0.5513
{0.1}

0.5550
{1}

predefined Cartesian paths (i.e., providing directly p(s) as
input to the PTP problem). Indeed, two-step methods can only
return longer motion times than the global optimal time. On
the other hand, two-step approaches are computationally more
efficient and accept any Cartesian path to start with.

We considered three different motion tasks with the bound-
ary conditions specified in Tab. I. The global PTP minimum
time optimization problem is solved using the direct collo-
cation method in the trajectory optimization library Optim-
Traj [18]. For illustration, the resulting globally optimal joint
velocity and torque profiles for the first motion task are shown
in Fig. 3.

In order to apply a two-step solution method in the presence
of redundancy, we follow the procedure in Fig. 2: from the
sequence of robot configurations in the time-optimal trajectory
q∗(t), a corresponding sequence of end-effector positions is
computed via the direct kinematics of the 3R robot arm, and
then interpolated in the Cartesian space using cubic splines.
In the first step, this parametrized path is input to the ACC,
PGV, and WPV methods, which generate different joint paths,
sampled every ∆s = 0.001 and with send = 1, that are
associated to the same Cartesian path. For better accuracy, all
the available joint configurations samples are used within the
cubic splines interpolation. In the second (and common) step,
the time-optimal motion is obtained on each joint path using
TOPP [6]. The tuning of parameters is done separately for each
method, so as to achieve the best possible performance for
each task. Specific ranges are chosen for each parameter and
the best values are searched on a discretized grid by evaluating
a very large number of simulations. In the ACC solution, the
γ and D parameters are more influential than δ2 and δ1,max.
For efficiency, the first two parameters are tuned together, and
then kept fixed to tune the latter ones.

Table II reports the comparative results obtained on the three
motion tasks of Tab. I, together with the parameters used for
each method/task. The proposed second-order solution ACC
returns the fastest motion time among the three methods, i.e.,

0.05 0.1 0.15 0.2

−2

0

2

4

6

8

10

V
e
lo

c
it
ie

s
 [
ra

d
/s

]

0.05 0.1 0.15 0.2
−20

−10

0

10

20

time [s]

T
o
rq

u
e
s
 [
N

m
]

J
1

J
2

J
3

Fig. 3: Global time-optimal joint velocities and torques for the
3R planar arm on the first motion task.

0 0.05 0.1 0.15 0.2 0.25
−4

−2

0

2

4

6

8

10

V
e
lo

c
it
ie

s
 [
ra

d
/s

]

0 0.05 0.1 0.15 0.2 0.25
−20

−10

0

10

20

time [s]

T
o
rq

u
e
s
 [
N

m
]

J
1

J
2

J
3

Fig. 4: Joint velocities and torques for the 3R planar arm with
the ACC solution on the first motion task.

also the closest to the global optimal solution. The resulting
minimum time for the first motion task is only 7.6% longer
than the global optimal solution. On the three tasks, the
average increase of the motion time for the ACC, WPV, and
PGV methods is, respectively, 13.4%, 24.7%, and 48.2% with
respect to the global optimal solution. Figure 4 shows the joint
velocities and torques obtained using the ACC method for the
first motion task: at every instant, at least one joint is saturated
either to its torque or velocity limit.

Finally, Figure 5 shows stroboscopic views of the best
solutions found for each method on the first motion task,
and the associated evolutions in the phase plane (s, ṡ). Each
solution produces in fact a different path in the joint space,
which leads also to different maximum velocity curves and
associated optimal trajectories. Although the MVC curves of
the PGV method are higher than those of WPV, allowing in
principle larger pseudo-velocities and thus a faster motion, this
feature is not exploited efficiently and the optimal trajectory
remains far from these curves in the intermediate range of s
values. Instead, the ACC solution leads to the highest MVC
curves, and the optimal trajectory is able to cover most of
the underlying area. For further comparison, the joint path

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED IN JUNE 2018

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [

m
]

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [

m
]

(b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [

m
]

(c)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [

m
]

(d)

(e) (f) (g) (h)

Fig. 5: Stroboscopic motion of the 3R planar arm [top] and optimal trajectories in the phase plane [bottom] using different
solutions for the first motion task in Tab. I: (a-e) with direct collocation method; (b-f) with the proposed ACC; (c-g) with
WPV; (d-h) with PGV. The initial configuration q0 (in blue) is always the same. The purple point in (a) is the final position
pf used to generate the Cartesian path from the PTP optimization. The resulting Cartesian path p(s) (in black) is used then by
all two-step methods, while the obtained final configurations are shown in green. In (e,f,g,h), the cyan lines are the maximum
velocity curves MVCt (solid) and MVCv (dotted), while the black lines are the obtained time-optimal profiles.

corresponding to the global time-optimal solution (obtained
with the direct collocation method) were also fed into the
TOPP algorithm. As expected, the resulting minimum time
using TOPP is exactly equal to the optimal time obtained from
the direct collocation method. The phase-plane plot in Fig. 5(e)
clearly shows how the optimal trajectory fully exploits the area
below the MVCv curve.

V. EXPERIMENTAL RESULTS FOR A KUKA LWR IV

As a second case study, we have considered a 7R KUKA
LWR lightweight robot and compared the different inverse
differential methods using two Cartesian tasks defined for the
position of the end-effector flange center (m = 3). Since the
rotation of joint 7 has no effect on it, the final flange was
frozen resulting in only n = 6 active joints, with a redundancy
degree n − m = 3. All computations were done using the
dynamic model identified in [19]. The (symmetric) limits on
joint velocities and torques are set to:

q̇max
 ± (1.92 1.92 2.23 2.23 3.56 3.21) [rad/s],

τmax
 ± (176 176 100 100 100 38) [Nm].
(28)

The first motion task was a linear path of length 0.66 m. To
study the influence of the initial configuration q0 on the opti-
mal solution, the ACC method was applied starting from the
three different configurations given in Tab. III, the first one ob-
tained using (26) and the other two chosen randomly, all asso-
ciated to the same initial position p0 = (−0.4, 0.25, 0.3) [m].

The solution obtained when starting with the configuration (a)
provided a reduction of the minimum time by 8.5-10.5%.

TABLE III: Minimum motion times along a linear path for the
KUKA LWR robot using the ACC method from three different
initial configurations (with V-REP views).

Initial configuration q0 [rad] T ∗
ACC [s]

q
(a)
0 =

(
−1.12 1.80 −0.55 1.71 2.43 0.29

)T 0.4743

q
(b)
0 =

(
−0.34 1.94 0.16 1.71 1.20 −0.43

)T 0.5144

q
(c)
0 =

(
−0.72 1.94 −0.08 1.73 1.60 0.51

)T 0.5242

(a) (b) (c)

When executing the linear motion task from the initial
configuration (a) in Tab. III using the two-step methods, the
proposed ACC solution leads to the fastest motion time, with
an improvement of 22.6% and 31.7% over the WPV and PGV
solutions. We considered a second motion task along an ellipse
in the 3D space, with major and minor axes rM = 0.2 and
rm = 0.1 [m], starting the robot at rest from the configuration
q0 =

(
1.15 −0.54 0.10 1.47 −0.30 0.76

)T
[rad], which

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AL KHUDIR AND DE LUCA: FASTER MOTION ON CARTESIAN PATHS EXPLOITING ROBOT REDUNDANCY 7

corresponds to p0 = (0.2, 0.6, 0.2) [m]. Again, the ACC
solution provided the best result, with a reduction of the
motion time by 14.6% over the other two methods. These
results are summarized in Tab. IV, which reports also the (best)
set of parameters used for each method/task.

TABLE IV: Minimum motion times for the KUKA LWR robot
using different two-step solution methods.

Method Task T ∗ [s]

PGV (δ = 0.3) linear 0.6901

WPV (γ = 1) linear 0.6127

ACC (γ = 0.5, δ2 = 0.4,
δ1,max = 100, D = 5I) linear 0.4743

PGV (δ = 0.6) ellipse 1.2

WPV (γ = 0.35) ellipse 1.2

ACC (γ = 0.5, δ2 = 0.4,
δ1,max = 100, D = 5I) ellipse 1.0245

In view of the good results obtained with the ACC method,
the two motion tasks on the linear and the elliptic path were
implemented in experiments on the KUKA LWR IV robot
using the FRI library [20] in position control mode. Due to
residual uncertainty in the robot dynamic model, the ACC
solution was re-generated in a conservative way, using only
95% of the maximum available nominal torques and joint
velocities. The new motion times were 0.496 s for the linear
task and 1.081 s for the ellipse task (compare with Tab. IV).

Figure 6 shows the phase plane solution obtained for ellipse
task using the ACC method. The time-optimal trajectory
matches the curve MVCv along the entire path, following
the torque-related bounds specified by α(s, ṡ) and β(s, ṡ)
in (6) just at the beginning and toward the end of the path.
In fact, the MVCv curve is much lower than the MVCt
curve, and the robot reaches its velocity limits very quickly
because of its large torque/acceleration capabilities. Figure 7
shows the experimental joint velocities and torques normalized
with respect their nominal values in (28). The minimum time
planned torque (in red) of the second joint saturates at the
start, near the middle, and toward the end of the trajectory. In
the rest of the trajectory, the second and fourth joint velocities
saturate in turn, consistently with the plot in Fig. 6.

During task execution with the KUKA LWR, the torques are
measured by the available joint torque sensors. The differences
between planned and executed/measured torques in Fig. 7 are
due to unmodeled dynamics (motor friction, joint elasticity)
neglected in the optimization, measurement noise (encoders
and torque sensors), as well as non-idealities of the low-level
robot controller. Because of the latter, the joint torques cannot
follow perfectly the planned discontinuities of the optimal
torques at the switching points.

For the linear task, the Cartesian error norm using different
two-step solutions is shown in Fig. 8. The largest peak error
is obtained with the ACC method, which is also the one with
the fastest motion time. On the other hand, the tracking error
vanishes as motion comes to an end, whereas some residual
error is left with the other two methods. A trade-off between
faster motion times and better tracking performance can be

Fig. 6: Optimal phase-plane trajectory for the KUKA LWR
robot tracing an ellipse path using the ACC method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0
0.5

q̇ 1

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.5
0

0.5

q̇ 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5
0

0.5

q̇ 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0
0.5

1

q̇ 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2

q̇ 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2
0.4

time [s]

q̇ 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6
0.4
0.2

0
0.2

τ 1

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0

1

τ 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2

τ 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
0.2

0
0.2
0.4

τ 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0
0.01

τ 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04
0.02

0
0.02
0.04

time [s]

τ 6

Fig. 7: Normalized joint velocities [top] and normalized
torques [bottom] in the minimum time experiment with the
KUKA LWR robot on an ellipse path using the ACC method.

achieved by downrating the maximum available nominal joint
torque in (28). From Fig. 8 and Tab. V, using the ACC solution
with only 35% of τmax returns better optimal time and less
mean Cartesian error norm than using the other two solutions
with 95% of τmax.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED IN JUNE 2018

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time [s]

C
a
rt

e
s
ia

n
 e

rr
o
r

n
o
rm

 [
m

]

PGV

WPV

ACC

Fig. 8: Cartesian error norm for the KUKA LWR robot tracing
a linear path using different two-step solutions with 95% of
the maximum available nominal torques and joint velocities.

TABLE V: Mean Cartesian error norm for the KUKA LWR
robot tracing a linear path using the ACC method with 95%
of q̇max and different τmax percentages.

% τmax T ∗[s] Mean Cartesian error norm [m]

35 0.556 0.0068
45 0.530 0.0072
55 0.518 0.0075
65 0.510 0.0080
75 0.505 0.0087
85 0.501 0.0094
95 0.496 0.0095

VI. CONCLUSIONS

We presented a two-step method that addresses in an
approximate but effective way the minimum time control prob-
lem for redundant robots moving along a given Cartesian path.
In a first step, a local second-order inverse kinematic method
was used to map Cartesian paths into joint paths, while in a
second step an established minimum time planning algorithm
provides the optimal solution under joint velocity and torque
bounds. As ingredients in our method, we used weighted
pseudoinversion, optimized an inertia-related criterion, and
included a damping term in the null-space of the task Jacobian.
Working at the second-order level allows obtaining smoother
paths while including dynamic issues.

Based on the extensive tests on various paths and for
different robots, which are reported only in part here, we have
found consistent improvements in the obtained motion times
over similar approaches that use first-order inverse solutions at
the velocity level. As shown experimentally, the combination
of our second-order solution method with the TOPP algorithm
leads to reasonable performance in tracking minimum time
trajectories. A trade-off between faster motion times and better
tracking performance can be achieved by including additional
constraints, such as torque rate bounds that eliminate critical
discontinuities in the solution [21].

Our two-step second-order method leads to faster motion
times, but is still intended currently for off-line planning
situations only. Real-time limitations are distributed between
both steps, and depend on the length of the original Cartesian
path, the path parameter sampling, the number of joints, and

the complexity of the used robot dynamics, leading to running
times in the order of seconds. On the other hand, finding the
accurate global minimum time with a constrained solution tra-
jectory by means of general numerical optimization techniques
requires at present minutes to hours of computation. We plan
to pursue computationally more efficient implementations of
the present method, as well as other semi-global methods that
can run in real time, such as model predictive control along
Cartesian paths for redundant robots that minimizes the motion
time to go.

REFERENCES

[1] J. E. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” Int. J. of Robotics Research,
vol. 4, no. 3, pp. 3–17, 1985.

[2] K. Shin and N. McKay, “Minimum-time control of robotic manipulators
with geometric path constraints,” IEEE Trans. on Automatic Control,
vol. 30, no. 6, pp. 531–541, 1985.

[3] J.-J. Slotine and Y. Hyun, “Improving the efficiency of time-optimal
path-following algorithms,” IEEE Trans. on Robotics and Automation,
vol. 5, no. 1, pp. 118–124, 1989.

[4] Z. Shiller, “On singular time-optimal control along specified paths,”
IEEE Trans. on Robotics and Automation, vol. 10, no. 4, pp. 561–566,
1994.

[5] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Trans. on Automatic Control, vol. 54, no. 10, pp. 2318–
2327, 2009.

[6] Q.-C. Pham, “A general, fast, and robust implementation of the time-
optimal path parameterization algorithm,” IEEE Trans. on Robotics,
vol. 30, no. 6, pp. 1533–1540, 2014.

[7] M. Galicki, “Time-optimal controls of kinematically redundant ma-
nipulators with geometric constraints,” IEEE Trans. on Robotics and
Automation, vol. 16, no. 1, pp. 89–93, 2000.

[8] M. Shugen and M. Watanabe, “Time optimal path-tracking control of
kinematically redundant manipulators,” JSME Int. J. Ser. C Mechanical
Systems, Machine Elements and Manufacturing, vol. 47, no. 2, pp. 582–
590, 2004.

[9] A. Reiter, A. Müller, and H. Gattringer, “Inverse kinematics in
minimum-time trajectory planning for kinematically redundant manipu-
lators,” in Proc. 42nd Ann. Conf. IEEE Industrial Electronics Soc., 2016,
pp. 6873–6878.

[10] P. Chiacchio, “Exploiting redundancy in minimum-time path following
robot control,” in Proc. American Control Conf., 1990, pp. 2313–2318.

[11] F. Basile and P. Chiacchio, “A contribution to minimum-time task-space
path-following problem for redundant manipulators,” Robotica, vol. 21,
no. 2, pp. 137–142, 2003.

[12] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE J. on Robotics
and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[13] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2008, pp. 3299–3305.

[14] L. Zlajpah, “On time optimal path control of manipulators with bounded
joint velocities and torques,” in Proc. IEEE Int. on Robotics and
Automation, 1996, pp. 1572–1577.

[15] T. Yoshikawa, “Dynamic manipulability of robot manipulators,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 1985, pp. 1033–1038.

[16] P. Chiacchio and M. Concilio, “The dynamic manipulability ellipsoid
for redundant manipulators,” in Proc. IEEE Int. Conf. on Robotics and
Automation, 1998, pp. 95–100.

[17] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast motions
in biomechanics and robotics. Springer, 2006, pp. 65–93.

[18] M. Kelly. (2016) OptimTraj: Trajectory optimization library for matlab.
[Online]. Available: https://github.com/MatthewPeterKelly/OptimTraj

[19] C. Gaz, F. Flacco, and A. De Luca, “Identifying the dynamic model
used by the KUKA LWR: A reverse engineering approach,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 2014, pp. 1386–1392.

[20] KUKA.FastResearchInterface 1.0, KUKA System Technology (KST),
D-86165 Augsburg, Germany, 2011, version 2.

[21] D. Constantinescu and E. A. Croft, “Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths,” Journal of
robotic systems, vol. 17, no. 5, pp. 233–249, 2000.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2018.2853806

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

