A reduction approach on the discrete-time equivalent model of a nonlinear input delayed system is proposed to design a sampled-data stabilizing feedback. Global asymptotic stability of the feedback system is so achieved by solving the problem over the reduction state. Stabilization of the reduced dynamics is obtained through input-Lyapunov matching. Connections with prediction-based methods are established. A simulated example illustrates the performances.

Sampled-data reduction of nonlinear input-delayed dynamics / Mattioni, Mattia; Monaco, Salvatore; Normand Cyrot, Dorothee. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - ELETTRONICO. - 1:1(2017), pp. 116-121. [10.1109/LCSYS.2017.2710118]

Sampled-data reduction of nonlinear input-delayed dynamics

MATTIONI, MATTIA
;
MONACO, Salvatore;
2017

Abstract

A reduction approach on the discrete-time equivalent model of a nonlinear input delayed system is proposed to design a sampled-data stabilizing feedback. Global asymptotic stability of the feedback system is so achieved by solving the problem over the reduction state. Stabilization of the reduced dynamics is obtained through input-Lyapunov matching. Connections with prediction-based methods are established. A simulated example illustrates the performances.
2017
Sampled-data control; Delay systems; Algebraic/geometric methods
01 Pubblicazione su rivista::01a Articolo in rivista
Sampled-data reduction of nonlinear input-delayed dynamics / Mattioni, Mattia; Monaco, Salvatore; Normand Cyrot, Dorothee. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - ELETTRONICO. - 1:1(2017), pp. 116-121. [10.1109/LCSYS.2017.2710118]
File allegati a questo prodotto
File Dimensione Formato  
Mattioni_Sampleddatareduction_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 531.84 kB
Formato Adobe PDF
531.84 kB Adobe PDF   Contatta l'autore
Mattioni_Preprint-sampled-data-reduction_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 394.48 kB
Formato Adobe PDF
394.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/972557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact