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Abstract—A reduction approach on the discrete-time equiva-
lent model of a nonlinear input delayed system is proposed to
design a sampled-data stabilizing feedback. Global asymptotic
stability of the feedback system is so achieved by solving
the problem over the reduction state. Stabilization of the re-
duced dynamics is obtained through Input-Lyapunov Matching.
Connections with prediction-based methods are established. A
simulated example illustrates the performances.

Index Terms—Sampled-data control, Delay systems, Alge-
braic/geometric methods

I. INTRODUCTION

WHEN dealing with time delay systems, a huge number
of challenges arise from both theoretical and practical

problems (see, among others, [1], [2], [3], [4] and references
therein). In particular, two main classes of delays have been
identified: discrete delays when the model depends on retarded
variables at time t − τ (τ > 0 denotes the delay length);
distributed delays, when the model explicitly depends on the
story of the retarded variables over the interval [t− τ, t[.

This work is concerned with systems affected by discrete
delays over the input variables. Despite the wide literature, a
lot of questions still remain unanswered, even for Linear Time
Invariant (LTI) systems. This is mainly linked with the fact
that the retarded system is intrinsically infinite dimensional.
Different prediction and reduction-based design approaches
have been proposed (e.g., [5], [6], [7], [8], [9]). In the first
case, the stabilizing feedback is deduced by computing the
delay-free feedback over the future trajectories of the system
on the time window [t, t+τ[. In the second case, the design of
the reduction-based control is lead to a somehow equivalent
reduced delay-free dynamics in a sense that depends on the
control purpose.

More recently, an increasing focus has been devoted to
sampled-data time-delay systems (e.g, [10], [11]) when as-
suming that the control is piecewise constant and measures
are available at discrete-time instants. This interest is mainly
motivated by the fact that the retarded infinite dimensional
continuous-time system admits a finite dimensional equivalent
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sampled-data model whenever there exists an explicit relation
among the delay and the sampling period. In this context,
several approaches have been proposed based on reduction
(e.g., [12], only for the LTI case), prediction or, more re-
cently, Immersion and Invariance methods (e.g., [13], [14] for
nonlinear systems). In the latter cases, the design is based
on the assumption that the delay-length is an entire multiple
of the sampling period (i.e., τ = Nδ for some N ∈ N). This
assumption has been recently relaxed in [15] by considering
non-entire delays (namely, τ = Nδ +σ for some N ∈ N and
σ ∈ [0,δ [) and extending the prediction method to a non-entire
time interval of length Nδ +σ . Moreover, to improve robust-
ness, an Immersion and Invariance (I&I) approach, with the
delay free dynamics corresponding to the &I target dynamics,
has been proposed in in [16].

In spite of that, predictor-based strategies are hard to extend
to much general classes of time-delay systems as, for example,
LTI dynamics affected by multichannel delay ([17], [18]).
Following the work by Artstein [6], and for the first time at the
best of authors’ knowledge, a sampled-data reduction-based
method is proposed in this paper for stabilizing nonlinear
systems affected by input delay. Differently from the work
in [15], the present strategy qualifies for extension to a larger
class of time-delay systems, such as the multichannel case.
Finally, the sampled-data design over the reduced model
simplifies the task and allows the computation of approximate
solutions that are actually implemented in practice.

Our contribution is two-fold: first, we define a discrete-time
reduction variable exhibiting a delay-free dynamics which
identifies the discrete-time reduced model; secondly, we prove
that any discrete-time feedback stabilizing the reduced model
guarantees stabilization at the sampling instants of the original
system. The design of the control law is pursued via a suitably
defined Input-Lyapunov Matching (ILM) problem ([19], [20])
when assuming smooth stabilizability of the delay-free system.
It is also shown that a suitable choice of the reduction-based
control enables one to recover the prediction-based feedback
proposed in [15].

In Section II the problem is set and the instrumental defi-
nitions provided while the main result is stated in Section III.
In Section IV, the design of the control law is developed and
the case of LTI system is detailed as a case study in Section
V. Simulations on the van der Pol oscillator are discussed in
Section VI. Final comments in Section VII conclude the paper.

Notations and definitions: All the functions and vector
fields defining the dynamics are assumed smooth over the



respective definition spaces. MU (resp. MI
U ) denotes the space

of measurable and locally bounded functions u : R → U
(u : I → U , I ⊂ R) with U ⊆ R. Uδ ⊆ MU denotes the set
of piecewise constant functions over time intervals of length
δ ∈]0,T ∗[, a finite time interval; i.e. Uδ = {u∈MU s.t. u(t) =
uk,∀t ∈ [kδ ,(k + 1)δ [;k ≥ 0}. Id and I denote the identity
function and matrix respectively. Given a vector field f , L f
denotes the Lie derivative operator, L f = ∑

n
i=1 fi(·) ∂

∂xi
. Given

two vector fields f and g, ad f g = [ f ,g] and iteratively adi
f g =

[ f ,adi−1
f g]. The operator eL f Id denotes the associated Lie

series operator, eL f := I+∑i≥1
Li

f
i! . Given any smooth function

h : Rn → R then eL f h(x) = h(eL f Id
∣∣
x). The composition of

functions is denoted by ” ◦ ”. A function R(x,δ ) = O(δ p) is
said of order δ p; p ≥ 1 if whenever it is defined it can be
written as R(x,δ ) = δ p−1R̃(x,δ ) and there exist a function
θ ∈K∞ and δ ∗ > 0 s. t. ∀δ ≤ δ ∗, |R̃(x,δ )| ≤ θ(δ ).

II. PROBLEM STATEMENT

Consider the nonlinear time-delay system

ẋ(t) = f (x(t))+g(x(t))u(t− τ) (1)

with x ∈ Rn, u ∈ R and f (0) = 0 and the delay-free system

ẋ(t) = f (x(t))+g(x(t))u(t). (2)

The following standing assumptions are set: the delay-free
system is forward complete so implying forward completeness
of (1) [14]; denoting by δ the sampling period, measurements
are available at sampling instants t = kδ , k ≥ 0 and u ∈ Uδ ;
the time delay τ is fixed, known and such that τ = Nδ +σ

for some N ∈ N and σ ∈ [0,δ [.

Denoting xk := x(kδ ) and uk := u(kδ ), one computes the
sampled-data equivalent model of (1) as

xk+1 =Fδ−σ (·,uk−N)◦Fσ (xk,uk−N−1)

=Fδ−σ (Fσ (xk,uk−N−1),uk−N)

:=Fδ (σ ,xk,uk−N−1,uk−N) (3)

with Fθ (x,u) = eθ(L f +uLg)Id
∣∣
x and u ∈Uδ .

Remark 2.1: When N = 0 and σ = 0, (3) recovers the
sampled-data equivalent model to the delay-free (2) [21]; i.e.

xk+1 =Fδ (xk,uk) = eδ (L f +ukLg)Id
∣∣
xk
. (4)

Roughly speaking, from (3) one deduces that a discrete
delay affecting (1) is transformed into a distributed delay on
the equivalent discrete-time model (3).

The aim of this work is to characterize a discrete-time
reduction variable (or simply reduction), say y, which exhibits
a discrete-time delay-free dynamics (the discrete-time reduced
model) with the property that any of its stabilizing controller
achieves stabilization of (3) in turn (i.e. sampled-data stabi-
lization of the original system (1)).

Definition 2.1 (S-GAS): The equilibrium of a continuous-
time dynamics ẋ = f (x) is sampled-data globally asymptot-
ically stable at the sampling instants t = kδ (k ≥ 0), if the
equilibrium of its discrete-time equivalent dynamics xk+1 =
eδL f Id

∣∣
xk

is globally asymptotically stable (GAS).

III. MAIN RESULT

A. The case τ = σ , (N = 0)

When N = 0, the sampled model (3) reduces to

xk+1 = Fδ (σ ,xk,uk−1,uk) = Fδ−σ (Fσ (xk,uk−1),uk). (5)

Accordingly, one can define the mapping

yk = F−σ

0 (Fσ (xk,uk−1)) (6)

with Fθ
0 (x) = eθL f Id

∣∣
x as a candidate reduction for (5). Com-

puting (6) one-step ahead, one gets

yk+1 = F−σ

0 (Fσ (xk+1,uk)). (7)

By rewriting (5) in terms of the reduction (6), one has

xk+1 =F̄δ (σ ,yk,uk) (8)

with

F̄δ (σ ,yk,uk) =Fδ−σ (·,uk)◦Fσ
0 (yk)

=eσL f e(δ−σ)(L f +ukLg)Id
∣∣
yk
.

By substituting the above mappings into (7), one concludes
that the dynamics of (6) is delay-free so that (6) is actually a
reduction for (5). More in detail, the reduced model takes the
form

yk+1 =Fδ
r (σ ,yk,uk) (9)

with

Fδ
r (σ ,y,u) :=F−σ

0 ◦Fδ (·,u)◦Fσ
0 (y)

=eσL f eδ (L f +uLg)e−σL f Id
∣∣
y.

Proposition 3.1: Any feedback uk = α(yk) achieving GAS
of the origin of (9) ensures GAS the origin of (5) and, thus,
S-GAS of (1). Furthermore, suppose that yk = 0, k ≥ k̄, then
xk goes to 0 in exactly k̄+1 steps.

Proof. Consider the original dynamics (5) equivalently
rewritten in the form (8). First, we write the original dynamics
(8) and the reduced model (9) as a strict-feedforward intercon-
nection over Rn×Rn of the form

xk+1 =F̄δ (σ ,yk,uk) (10a)

yk+1 =Fδ
r (σ ,yk,uk). (10b)

Now, consider any feedback uk = α(yk) that makes the origin
of the reduced model (10b) GAS and define the transformation
ζk = xk−φ(yk,yk−1) with

φ(yk,yk−1) = F−σ (·,α(yk−1))◦Fσ
0 (yk).

Under uk =α(yk), one has that φ(yk+1,yk) = F̄δ (σ ,yk,α(yk)).
so implying that, in the (ζ ,y) coordinates, the dynamics (10)
in closed-loop rewrites as the composition of two decoupled
dynamics

ζk+1 =0

yk+1 =Fδ
r (σ ,yk,α(yk))

with GAS equilibrium at the origin. Consequently, GAS of the
origin of the original system (5) (equivalently, (10a)) follows.
By virtue of the feedforward structure, if yk = 0 for any k≥ k̄,
then xk = 0 for k ≥ k̄+1. /



B. The case τ = Nδ +σ , (N > 0)

The definition of the reduction is generalized to N ≥ 0 as
follows.

Proposition 3.2: Consider the continuous-time system (1)
and let (3) be its sampled-data equivalent model. The map

yk =F−τ

0 ◦Fδ (·,uk−1)◦ · · · (11)

◦Fδ (·,uk−N)◦Fσ (xk,uk−N−1)

defines a reduction for (3) evolving according to the reduced
dynamics

yk+1 = Fδ
r (τ,yk,uk) (12)

with

Fδ
r (τ,y,u) :=F−τ

0 ◦Fδ (·,u)◦Fτ
0 (y)= eτL f eδ (L f +uLg)e−τL f Id

∣∣
y.

Proof. Computing (11) one-step ahead, we get

yk+1 =F−τ

0 ◦Fδ (·,uk)◦ · · · (13)

◦Fδ (·,uk−N+1)◦Fσ (xk+1,uk−N)

while (5) rewrites as

xk+1 = F̄δ (σ ,yk,uk−1, . . . ,uk−N) (14)

with

F̄δ (σ ,yk,uk−1, . . . ,uk−N) :=

F−σ (·,uk−N)◦F−δ (·,uk−N+1)◦ · · · ◦F−δ (·,uk−1)◦Fτ
0 (yk).

and, for N = 1, F̄δ (σ ,yk,uk−1) := F−σ (·,uk−1) ◦Fτ
0 (yk). By

substituting (14) into (13) one gets the result. /

Remark 3.1: Again, when τ = 0, y ≡ x and the reduction
dynamics (12) recovers the sampled-data delay-free one (4).

Remark 3.2: By exploiting the Lie exponential, (11) rewrites
as

yk =xk + ∑
s1+···+sN+2>0

(−1)s2σ s1+s2δ s3+···+sN+2

s1! . . .sN+2!
×

LsN+2
f+uk−N−1g . . .L

s1
f+uk−1gLs2

f Id
∣∣
xk
.

Remark 3.3: By expanding (12), one gets

yk+1 = eδL f (yk)+δukeτad f g(yk)+O(u2)

so explicitly recovering the Lie controllability directions ad j
f g

and their Lie brackets describing the sampled-data reduced
dynamics (12) which is delay-free but generally nonlinear in
the control uk.

Proposition 3.1 extends to this case as follows.

Theorem 3.1: Consider the continuous-time system (1) with
sampled-data equivalent model (3). Define the reduction y in
the form (11) evolving according to (12). Then, any feedback
uk = α(yk) achieving GAS of the origin of (12), ensures GAS
(resp., S-GAS) of the origin of (3) (resp., (1)). Furthermore,
suppose that yk = 0 for k≥ k̄, then xk converges to 0 in exactly
k̄+N +1 steps.

Proof. The proof proceeds along the lines of the one of
Proposition 3.1 by considering (14) and exploiting the cascade
structure

xk+1 =F̄δ (σ ,yk,uk−1, . . . ,uk−N), yk+1 = Fδ
r (τ,yk,uk).

/

Remark 3.4: The results in Proposition 3.2 and Theorem
3.1 hold in the case of entire delays (i.e., when σ = 0) so
providing an alternative solution to the one presented in [14].

According to the previous result, stabilization of the reduced
dynamics (12) ensures S-GAS in closed-loop of the original
system (1). In the following, a possible choice of the feedback
uk = α(yk) is proposed.

IV. ON THE DESIGN OF THE SAMPLED-DATA FEEDBACK

The following assumption is introduced.

A. There exists a smooth continuous-time feedback u(t) =
γ(x(t)) ensuring GAS of the equilibrium of the delay-free (2)
with radially-unbounded strict Lyapunov function V :Rn→R+

such that LgV (x) 6= 0 for any x 6= 0.

As proved in [19], Assumption A implies the existence of
a smooth sampled-data feedback stabilizing the origin of the
delay-free system (4). Such a feedback is inferred via the
notion of Input-Lyapunov Matching (ILM, [19], [20]).

Theorem 4.1 ([19]): Let the delay-free dynamics (2) fulfil
Assumption A. Then, there exists γδ : Rn→ R as the unique
solution uk = γδ (xk), for any xk = x(kδ ), of the ILM equality

eδ (L f +ukLg)V (x)
∣∣
xk
−V (xk) =

∫ (k+1)δ

kδ

L f+γ(·)gV (x(s))ds (16)

with x(s) = esL f+γ(·)g Id
∣∣
xk

. Moreover, γδ (x) admits the power
expansion

γ
δ (x) = γ(x)+∑

i≥0

δ i

(i+1)!
γi(x). (17)

As a consequence, uk = γδ (xk) ensures GAS (resp. S-GAS) of
the closed-loop delay-free dynamics (4) (resp., (2)).

In the following, we will show that Assumption A is
sufficient to ensure the existence of a sampled-data reduction-
based feedback yielding S-GAS of the equilibrium of the
retarded system (1).

A. Reduction-based stabilization via ILM

The idea is to construct a sampled-data feedback over the
dynamics (9) to ensure matching (at any sampling instant) of
the Lyapunov function V (x(t)) along the closed-loop delay-
free dynamics (2) when u(t) = γ(x(t)). For, we recall that
when τ = 0, x≡ y so that the following result can be stated.

Theorem 4.2: Consider the time-delay system (1) under
Assumption A and let (3) be its sampled-data equivalent
model. Introduce the reduction y as in (11) with reduced



dynamics (12). Then, there exists a smooth mapping Kδ (τ, ·) :
R×Rn→ R of the form

Kδ (τ,y) = γ(y)+ ∑
i+ j>0

δ iτ j

(i+1)! j!
Ki j(y) (18)

that is the unique solution uk = Kδ (τ,yk) of the ILM equality

V (Fδ
r (τ,yk,uk))−V (yk) =

∫ (k+1)δ

kδ

L f+γ(·)gV (y(s))ds (19)

for any k ≥ 0 and y(s) = e(s−kδ )L f+γ(·)g Id
∣∣
yk

. Moreover, the
feedback uk = Kδ (τ,yk) makes the closed-loop equilibrium of
(3) (resp. (1)) GAS (resp. S-GAS).

Proof. The existence of a unique solution to (19) in the form
(18) is deduced from direct application of the Implicit Func-
tion Theorem provided that Assumption A holds. Concerning
closed-loop stability, because of matching, one gets that

∫ (k+1)δ

kδ

L f+γ(·)gV (y(s))ds =
∫ (k+1)δ

kδ

L f+γ(·)gV (x(s))ds < 0

with x(s) = e(s−kδ )L f+γ(·)g Id
∣∣
xk

. Thus, by construction, one has
that

V (Fδ
r (τ,yk,Kδ (τ,yk)))−V (yk)< 0.

Thus, when uk = Kδ (τ,yk), (12) has a GAS equilibrium of the
origin. From Theorem 3.1, one concludes that such a feedback
ensures GAS of (3) (resp., S-GAS of (1)) in closed-loop. /

Remark 4.1: The final feedback uk = Kδ (τ,y) is smoothly
parametrized by both δ and τ . When τ → 0, (19) coincides
with (16) so implying that Kδ (0,x) = γδ (x) in (17).

B. About approximate solutions

Theorem 4.2 proves that whenever one can compute a
stabilizing smooth feedback for the continuous-time delay-
free system (2), sampled-data stabilization in closed-loop of
the time-delay dynamics (1) can be pursued by combining
reduction-based and ILM arguments. Though, the final feed-
back comes in the form of a series expansions in powers of δ

and τ . As a consequence, exact solutions cannot be computed
in general and only approximation of (18) can be implemented
in practice.

Definition 4.1: An approximate solution of order p
Kδ [p]

N (τ, ·) to (19) is defined as the truncation of the series
(18) at any finite p := i+ j in δ iτ j; i.e.,

Kδ [p](τ,y) =
j+i=p

∑
i=0, j=0

δ iτ j

(i+1)! j!
Ki j(y).

Each term Ki j can be computed via an iterative procedure
by developing both sides of (19) and equating the terms with
the same power δ iτ j. Accordingly, at each step, one has to

solve a linear equation in the unknown Ki j as a function of
the previous terms. For the first terms one gets

K01 =
γ(y)
LgV

Lad f gV, K20 = γ̈(y)+
γ̇(y)

2LgV
Lad f gV (20a)

K02 =
2K01

LgV
Lad f gV − γ(x)

LgV
(LgL2

f −2L f LgL f +L2
f Lg)V

K10 =γ̇(y) = L f+γgγ(y) (20b)

K11 =−
K01

LgV
(LgL f +L f Lg)V −

2K00K01

LgV
L2

gV+

K10

LgV
Lad f gV − K00

LgV
(LgL2

f −L2
f Lg)V

−
K2

00
LgV

(L2
gL f −L f L2

g)V (20c)

with γ̈(y) = L2
f+γgγ(y).

Although global results are in general lost under approxi-
mate solutions, those control still yield interesting properties in
closed-loop, such as practical-GAS or Input-to-State Stability
([14], [20] and [22]).

C. Reduction and prediction-based stabilization

In the sequel a comparison with respect to the predictor-
based approach proposed in [15] is developed. As a matter
of fact, by suitably defining u = α(y) in Theorem 3.1, the
predictor feedback is recovered. For this purpose, we note that
the reduction variable yk in (11) rewrites as yk = F−τ

0 (x(kδ +
τ)) where

x(kδ + τ) = Fδ (·,uk−1)◦ · · · ◦Fδ (·,uk−N)◦Fσ (xk,uk−N−1).

defines the prediction of the state at t = kδ + τ from xk.

Based on the above relation, it turns out that reduction can
be interpreted as prediction of the state at t = kδ + τ that
is projected backward via the free evolution F−τ

0 (·); namely,
yk = F−τ

0 (x(kδ + τ)).

The following statement settles the result in [15] in terms
of reduction.

Theorem 4.3: Consider the time-delay system (1) under
Assumption A and let (5) be its equivalent sampled-data
model. Let the reduction state y in (11) evolve according to
(12). Then, the feedback uk = γδ (Fτ

0 (yk)), where γδ : Rn→R
is computed as the unique solution to (16), ensures GAS of
(1) at the time instants t = kδ +σ with k ≥ 0.

Proof. In order to prove the result, one has to prove that the
feedback uk = γδ (Fτ

0 (yk)) coincides with the predictor-based
feedback proposed in [15]. For, introduce the coordinates
change zk = Fτ

0 (yk) so that uk = γδ (zk) while the dynam-
ics (12) takes the form zk+1 = Fδ (zk,uk) with Fδ (zk,uk) =
eδ (L f +ukLg)Id

∣∣
zk
. Thus, the predictor feedback is recovered.

Since γδ is the solution of an ILM problem, u = γδ (z) sta-
bilizes the predictor dynamics. Thus, such a feedback ensures
S-GAS of (1) in closed-loop. /

By virtue of the above result, we note that, whenever
the system (1) is driftless, the reduction and predictor-based
solutions coincide.



Contrarily to prediction the reduction-based feedback only
requires the knowledge of the state at the sampling instants.
Indeed, the former control is based on the knowledge of the
state at the inter sampling instant t = kδ + σ that is not
available from measures. Thus, the feedback in [15] needs
a further prediction over the inter sampling interval.

Moreover, the prediction-based controller [15] ensures
sampled-data stabilization at the inter sampling instants t =
kδ +σ (k≥ 0) while the proposed reduction feedback ensures
stabilization at the sampling instants t = kδ and, thus, S-GAS.
By virtue of this, the prediction-based control should be more
sensible to the variation of σ and, thus, on τ .

V. LTI SYSTEMS AS A CASE STUDY

Consider the case in which (1) is a LTI system

ẋ(t) = Ax(t)+Bu(t− τ) (21)

under the standing assumptions presented in Section II plus
AL. the couple (A, B) is controllable.

The sampled-data equivalent model of (21) is provided by

xk+1 = Aδ xk +Aδ−σ Bσ uk−N−1 +Bδ−σ uk−N . (22)

reducing to, for τ = 0,

xk+1 = Aδ xk +Bδ uk (23)

with As = esA, Bs =
∫ s

0 eAµ dµB and Aδ−σ Bσ +Bδ−σ = Bδ .

Remark 5.1: Assumption AL is necessary and sufficient to
guarantee that the delay-free sampled-data couple (Aδ , Bδ )
is controllable almost everywhere [23]. This can be relaxed
by only requiring stabilizability of the couple (A,B) without
affecting our result.

Accordingly, Theorems 3.2 specifies as follows.

Corollary 5.1: Consider the LTI system (21) under Assump-
tion AL. Then,

yk = xk +A−σ Bσ uk−N−1 +
k−1

∑
j=k−N

A(k−N− j−1)δ−σ Bδ u j (24)

is a reduction for (22) evolving according to the dynamics

yk+1 = Aδ yk +A−τ Bδ uk. (25)

From Theorem 3.1, it turns out that, whenever (25) is
controllable, one can compute a control uk = Fδ yk so that
Aδ +A−τ Bδ Fδ is Schur and, as a consequence, (21) is S-GAS
in closed-loop. As a consequence, the problem of stabilizing
the retarded system is reconduced to assigning the eigenvalues
of the reduced model.

In the following, it is shown that controllability of the delay-
free continuous-time system ensures controllability (almost
everywhere) of (25).

Proposition 5.1: Consider the LTI system (21) under As-
sumption AL and introduce the reduction (24) with dynamics
(25). Then, (25) is controllable almost everywhere and any
feedback uk = Fδ yk such that Aδ +A−τ Bδ Fδ is Schur ensures
that (22) (resp., (21)) is GAS (resp., S-GAS).

Proof. One has to show that (25) is controllable. By com-
puting the controllability matrix R(Aδ ,A−τ Bδ ), one can easily
verify that R(Aδ ,A−τ Bδ ) = A−τR(Aδ ,Bδ ) where R(Aδ ,Bδ )
denotes the nonsingular controllability matrix of the delay-
free system (23). Thus, one can compute a control uk =
Fδ yk so that Aδ +A−τ Bδ Fδ is Schur. In order to guarantee
asymptotic stability of (22), introduce the auxiliary states
v = col(v1, . . . ,vN+1) with vi

k = uk−N+i for i = 1, . . . ,N+1 and
consider the extended (x, v, y)-dynamics under uk = Fδ ykxk+1

vk+1
yk+1

=

0 A12 Aδ

0 Â B̂Fδ

0 0 Aδ +A−τ Bδ Fδ

xk
vk
yk


with

A12 =
(
0 −A−σ Bσ −A−(δ+σ)Bδ . . . −A−(N−1)δ−σ Bδ

)
Â =

(
0 IN×N
0 0

)
, B̂ =

(
0
1

)
.

It is clear that the overall dynamical matrix is Schur so proving
the result. /

VI. THE VAN DER POL OSCILLATOR

Consider the case of the van der Pol oscillator whose
dynamics is provided by

ẋ1 = x2− x2
2u(t− τ), ẋ2 = u(t− τ) (26)

with x = col(x1,x2), τ = δ +σ and sampled-data equivalent
model described in [14]-[15]. Accordingly, the sampled-data
reduction state y = col(y1,y2) gets the form

y1 =x1−
σ3

3
u3

k−2−σ(x2 +δuk−1 +σuk−2)+δ (x2 +σuk−2

−uk−1(x2 +σuk−2)
2)−σ(uk−2x2

2− x2)−
δ 3

3
u3

k−1−

σ2

2
uk−2(2uk−2x2−1)− δ 2

2
uk−1(2uk−1(x2 +σuk−2)−1)

y2 =x2 +σuk−2 +(δ −σ)uk−1

so evolving according to

y1k+1 =y1 +δ (y1− y2
1u− (σ +δ )u)+

δ 2

2
(1−2y2u)u− δ 3

3
u3

y2k+1 =y2 +δu.

For feedback design, it was shown in [15] that (26) verifies
Assumption A with γ(x) = −3x1 −

x3
1
3 − x2 and Lyapunov

function V (x) = x2
1 +

x4
1
3 + x1x2 +

1
2 x2

2. Accordingly, the result
in Theorem 4.2 applies and one can compute the resulting
feedback uk = Kδ (δ +σ ,yk).

Partial simulations are reported in Figure 1 providing an in-
teresting comparison of the closed-loop performances yielded
by the approximate reduction-based (RB) and prediction-
based (PB, [15]) feedback laws. In particular, the approximate
control law uk = Kδ [2](σ ,y) of Theorem 4.2 has been applied.
Although further simulations show that both strategies behave
similarly for small δ , prediction-based control yields degrad-
ing performances (1) as δ and σ increase. Moreover, further
simulations underline that the evolutions of the Lyapunov
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Fig. 1. δ = 0.5 s, N = 1 and σ = 0,4 s.

function under reduction-based feedback are decreasing, at
the sampling instants, even for higher values of the sampling
period.

VII. CONCLUSIONS

This paper introduces a sampled-data reduction approach
for stabilizing nonlinear dynamics affected by non-entire input
delay as a generalization of the prediction-based methodolo-
gies presented in [14] and [15]. Further investigations will
address robustness with respect to variations of the delay
length and extensions to more general classes of time-delayed
systems. Finally work is in progress toward nonlinear time-
delay discrete-time dynamics.
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