In this paper, we propose a quick and easy approach to estimate the undistortion function of RGBD sensors. Our method does not rely on the knowledge of the sensor model, on the use of a specific calibration pattern or on external SLAM systems to track the device position.We compute a nonparametric approximation of the undistortion function by applying regression methods to calibration data that can be acquired wherever a sufficiently large planar surface is observed. The procedure is fast, easy, and be used on-line. Experimental results show a significant improvement when using undistorted images in applications like mapping.

Nonparametric calibration for depth sensors / DI CICCO, Maurilio; Iocchi, Luca; Grisetti, Giorgio. - STAMPA. - 302:(2016), pp. 923-935. (Intervento presentato al convegno 13th International Conference on Intelligent Autonomous Systems, IAS 2014 tenutosi a Padova; Italy nel 15-18 July 2014) [10.1007/978-3-319-08338-4_67].

Nonparametric calibration for depth sensors

DI CICCO, MAURILIO
;
IOCCHI, Luca
;
GRISETTI, GIORGIO
2016

Abstract

In this paper, we propose a quick and easy approach to estimate the undistortion function of RGBD sensors. Our method does not rely on the knowledge of the sensor model, on the use of a specific calibration pattern or on external SLAM systems to track the device position.We compute a nonparametric approximation of the undistortion function by applying regression methods to calibration data that can be acquired wherever a sufficiently large planar surface is observed. The procedure is fast, easy, and be used on-line. Experimental results show a significant improvement when using undistorted images in applications like mapping.
2016
13th International Conference on Intelligent Autonomous Systems, IAS 2014
Control and Systems Engineering; Computer Science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Nonparametric calibration for depth sensors / DI CICCO, Maurilio; Iocchi, Luca; Grisetti, Giorgio. - STAMPA. - 302:(2016), pp. 923-935. (Intervento presentato al convegno 13th International Conference on Intelligent Autonomous Systems, IAS 2014 tenutosi a Padova; Italy nel 15-18 July 2014) [10.1007/978-3-319-08338-4_67].
File allegati a questo prodotto
File Dimensione Formato  
Cicco_Nonparametric-Calibration_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 957.05 kB
Formato Adobe PDF
957.05 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact