In this work, we consider an autonomous robot that is required to understand commands given by a human through natural language. Specifically, we assume that this robot is provided with an internal representation of the environment. However, such a representation is unknown to the user. In this context, we address the problem of allowing a human to understand the robot internal representation through dialog. To this end, we introduce the concept of sensing descriptors. Such representations are used by the robot to recognize unknown object properties in the given commands and warn the user about them. Additionally, we show how these properties can be learned over time by leveraging past interactions in order to enhance the grounding capabilities of the robot.
Language-based sensing descriptors for robot object grounding / Gemignani, Guglielmo; Veloso, Manuela; Nardi, Daniele. - STAMPA. - 9513:(2015), pp. 3-15. (Intervento presentato al convegno 19th Annual RoboCup International Symposium, 2015 tenutosi a Hefei, China) [10.1007/978-3-319-29339-4_1].
Language-based sensing descriptors for robot object grounding
GEMIGNANI, GUGLIELMO
;NARDI, Daniele
2015
Abstract
In this work, we consider an autonomous robot that is required to understand commands given by a human through natural language. Specifically, we assume that this robot is provided with an internal representation of the environment. However, such a representation is unknown to the user. In this context, we address the problem of allowing a human to understand the robot internal representation through dialog. To this end, we introduce the concept of sensing descriptors. Such representations are used by the robot to recognize unknown object properties in the given commands and warn the user about them. Additionally, we show how these properties can be learned over time by leveraging past interactions in order to enhance the grounding capabilities of the robot.File | Dimensione | Formato | |
---|---|---|---|
Gemignani_Postprint-Language-based_2015.pdf
Open Access dal 01/08/2016
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
890.72 kB
Formato
Adobe PDF
|
890.72 kB | Adobe PDF | |
Gemignani_Language-based_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
872.26 kB
Formato
Adobe PDF
|
872.26 kB | Adobe PDF | Contatta l'autore |
RoboCup2015_Frontespizio-indice_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
118.9 kB
Formato
Adobe PDF
|
118.9 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.