The paper deals with sampled-data stabilization of continuous-time dynamics in strict-feedback form via Immersion and Invariance. Starting from the characterization of the sampled-data target dynamics and its invariant manifold, a multi-rate control law is designed to achieve attractiveness and invariance of such a manifold. Simulations on an academic example and a practical case illustrate the performances.

Immersion and invariance stabilization of strict-feedback dynamics under sampling / Mattioni, Mattia; Monaco, Salvatore; Normand Cyrot, Dorothée. - In: AUTOMATICA. - ISSN 0005-1098. - 76:(2017), pp. 78-86. [10.1016/j.automatica.2016.10.009]

Immersion and invariance stabilization of strict-feedback dynamics under sampling

MATTIONI, MATTIA
;
MONACO, Salvatore;
2017

Abstract

The paper deals with sampled-data stabilization of continuous-time dynamics in strict-feedback form via Immersion and Invariance. Starting from the characterization of the sampled-data target dynamics and its invariant manifold, a multi-rate control law is designed to achieve attractiveness and invariance of such a manifold. Simulations on an academic example and a practical case illustrate the performances.
2017
Asymptotic stabilization; Digital implementation; Nonlinear systems; Sampled-data stabilization; Control and Systems Engineering; Electrical and Electronic Engineering
01 Pubblicazione su rivista::01a Articolo in rivista
Immersion and invariance stabilization of strict-feedback dynamics under sampling / Mattioni, Mattia; Monaco, Salvatore; Normand Cyrot, Dorothée. - In: AUTOMATICA. - ISSN 0005-1098. - 76:(2017), pp. 78-86. [10.1016/j.automatica.2016.10.009]
File allegati a questo prodotto
File Dimensione Formato  
Mattioni_Immersion-And-Invariance_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Contatta l'autore
Mattioni_Preprint-Immersion-and-invariance_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/931518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact