Objective This work investigated the molecular cause responsible for a late-onset parkinsonism–dystonia phenotype in three Italian siblings, and clinically characterize this condition. Methods Extensive neurophysiological and neuroradiological exams were performed on the three sibs. Most frequent late-onset metabolic diseases were ruled out through laboratory and biochemical analyses. A whole exome sequencing (WES) approach was used to identify the molecular cause underlying this condition. Results and conclusions Peculiar neurologic phenotype was characterized by dystonia–parkinsonism, cognitive impairment, gait ataxia and apraxia, pyramidal signs. WES analysis allowed the identification of a compound heterozygosity for two nucleotide substitutions (c.1340G>A, p.R447H; c.790C>T, p.Q264X) affecting the TPP1 gene in the three affected siblings. Biochemical analyses demonstrated abrogated TPP1 catalytic activity in primary skin fibroblasts, but revealed residual activity in leukocytes. Our findings document that late infantile neuronal ceroid lipofuscinosis (CLN2), which is caused by TPP1 gene mutations, should be considered in the differential diagnosis of autosomal recessive dystonia–parkinsonism syndromes. The availability of enzyme replacement therapy and other therapeutic approaches for ceroid lipofuscinoses emphasizes the value of reaching an early diagnosis in patients with atypical and milder presentation of these disorders.
Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations. clinical, molecular and biochemical characterization in three sibs / Giacopo, Raffaella Di; Cianetti, Luciano; Caputo, Viviana; Torraca, Ilaria La; Piemonte, Fiorella; Ciolfi, Andrea; Petrucci, Simona; Carta, Claudio; Mariotti, Paolo; Leuzzi, Vincenzo; Valente, Enza Maria; J, ; D'Amico, Adele; Bentivoglio, Annarita; Bertini, Enrico; Tartaglia, Marco; Zampino, Giuseppe. - In: JOURNAL OF THE NEUROLOGICAL SCIENCES. - ISSN 0022-510X. - ELETTRONICO. - 356:1-2(2015), pp. 65-71. [10.1016/j.jns.2015.05.021]
Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations. clinical, molecular and biochemical characterization in three sibs
Caputo, Viviana;Ciolfi, Andrea;Petrucci, Simona;Leuzzi, Vincenzo;Valente, Enza Maria;Bertini, Enrico;
2015
Abstract
Objective This work investigated the molecular cause responsible for a late-onset parkinsonism–dystonia phenotype in three Italian siblings, and clinically characterize this condition. Methods Extensive neurophysiological and neuroradiological exams were performed on the three sibs. Most frequent late-onset metabolic diseases were ruled out through laboratory and biochemical analyses. A whole exome sequencing (WES) approach was used to identify the molecular cause underlying this condition. Results and conclusions Peculiar neurologic phenotype was characterized by dystonia–parkinsonism, cognitive impairment, gait ataxia and apraxia, pyramidal signs. WES analysis allowed the identification of a compound heterozygosity for two nucleotide substitutions (c.1340G>A, p.R447H; c.790C>T, p.Q264X) affecting the TPP1 gene in the three affected siblings. Biochemical analyses demonstrated abrogated TPP1 catalytic activity in primary skin fibroblasts, but revealed residual activity in leukocytes. Our findings document that late infantile neuronal ceroid lipofuscinosis (CLN2), which is caused by TPP1 gene mutations, should be considered in the differential diagnosis of autosomal recessive dystonia–parkinsonism syndromes. The availability of enzyme replacement therapy and other therapeutic approaches for ceroid lipofuscinoses emphasizes the value of reaching an early diagnosis in patients with atypical and milder presentation of these disorders.File | Dimensione | Formato | |
---|---|---|---|
Di Giacopo_Protracted_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
534.23 kB
Formato
Adobe PDF
|
534.23 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.