This paper presents a separation result for some global stabilization via output feedback of a class of quadratic-like nonlinear systems, under the form of some stabilizability by state feedback on the one hand, and unboundedness observability on the other hand. They allow to design, for any domain of output initial condition, a dynamic output feedback controller achieving global stability. As an example, these conditions are shown to be satisfied by so-called Euler-Lagrange systems, for which a tracking output feedback control law is thus proposed.
A new separation result for Euler-Lagrange-like systems / G., Besancon; Battilotti, Stefano; Lanari, Leonardo. - 15:1(2002), pp. 247-252. (Intervento presentato al convegno 15th Triennial World Congress tenutosi a Barcelona; Spain) [10.3182/20020721-6-ES-1901.00291].
A new separation result for Euler-Lagrange-like systems
BATTILOTTI, Stefano
;LANARI, Leonardo
2002
Abstract
This paper presents a separation result for some global stabilization via output feedback of a class of quadratic-like nonlinear systems, under the form of some stabilizability by state feedback on the one hand, and unboundedness observability on the other hand. They allow to design, for any domain of output initial condition, a dynamic output feedback controller achieving global stability. As an example, these conditions are shown to be satisfied by so-called Euler-Lagrange systems, for which a tracking output feedback control law is thus proposed.File | Dimensione | Formato | |
---|---|---|---|
Besançon_Postprint_A-new-separation_2002.pdf
accesso aperto
Note: https://www.sciencedirect.com/science/article/pii/S1474667015387127
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
209.08 kB
Formato
Adobe PDF
|
209.08 kB | Adobe PDF | |
Besançon_A-new-separation_2002.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.