In this article, the problem of stabilization of a 2D unstable parabolic equation with multiple distributed inputs is addressed using a spectral decomposition approach. Furthermore the underlying redundancy of the actuation arrangement is exploited and actively used by introducing a suitable control allocation architecture. In particular, two optimal allocation policies have been considered: gradient descent and linear quadratic allocation. A simulation study supports and illustrates the theoretical findings.

Optimal Control Allocation for 2D Reaction‐Diffusion Equations With Multiple Locally Distributed Inputs / Cristofaro, Andrea. - In: OPTIMAL CONTROL APPLICATIONS & METHODS. - ISSN 0143-2087. - (2024). [10.1002/oca.3222]

Optimal Control Allocation for 2D Reaction‐Diffusion Equations With Multiple Locally Distributed Inputs

Cristofaro, Andrea
Methodology
2024

Abstract

In this article, the problem of stabilization of a 2D unstable parabolic equation with multiple distributed inputs is addressed using a spectral decomposition approach. Furthermore the underlying redundancy of the actuation arrangement is exploited and actively used by introducing a suitable control allocation architecture. In particular, two optimal allocation policies have been considered: gradient descent and linear quadratic allocation. A simulation study supports and illustrates the theoretical findings.
2024
control allocation; control of PDEs; optimal control; parabolic equations; reaction-diffusion equations
01 Pubblicazione su rivista::01a Articolo in rivista
Optimal Control Allocation for 2D Reaction‐Diffusion Equations With Multiple Locally Distributed Inputs / Cristofaro, Andrea. - In: OPTIMAL CONTROL APPLICATIONS & METHODS. - ISSN 0143-2087. - (2024). [10.1002/oca.3222]
File allegati a questo prodotto
File Dimensione Formato  
Cristofaro_Optimal_2024.pdf

accesso aperto

Note: https://doi.org/10.1002/oca.3222
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1724150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact