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ABSTRACT
In this article, the problem of stabilization of a 2D unstable parabolic equation with multiple distributed inputs is addressed using a
spectral decomposition approach. Furthermore the underlying redundancy of the actuation arrangement is exploited and actively
used by introducing a suitable control allocation architecture. In particular, two optimal allocation policies have been considered:
gradient descent and linear quadratic allocation. A simulation study supports and illustrates the theoretical findings.

1 | Introduction

In recent years, the control community has shown significant
interest in partial differential equations (PDEs) due to their
prevalence in models of infinite-dimensional systems, particu-
larly in areas such as robotics (e.g., haptic controllers, flexible
manipulators), industrial processes (e.g., manufacturing, reac-
tors, heat transfer plants), and biomedical engineering (e.g., tis-
sue engineering, hyperthermia). Reaction-diffusion equations,
which are a special class of second-order parabolic partial differ-
ential equations, offer a suitable framework for describing phe-
nomena such as chemical reactions, mechanical deformations,
and population dynamics [1, 2].

In the context of reaction-diffusion equations, research has
explored both boundary control (see for instance [3–7] and
the references therein) and distributed control (see for instance
[8–11] and the reference therein). In particular, several aspects
and techniques have been investigated, including for example
input-to-state stability, small gain theorems, backstepping,
sliding-mode control or spectral decomposition. In this article,
we will indeed reveal how the latter approach is well suited to be
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used in combination with the control allocation framework [12,
13]. Control allocation is a general setup that allows to handle
input redundancy in a systematic way, typically defining sec-
ondary control objectives based on optimization criteria [14–16].
We consider here a 2D unstable reaction-diffusion equation,
with a distributed actuation arrangement. Similarly to what has
been done in [10] for 1D reaction-diffusion equations, by iden-
tifying a basis of eigenfunctions, the equation can be rewritten
equivalently as an infinite collection of ODEs. Furthermore,
only a finite number of those ordinary equations entails an
unstable dynamics and this property enables for the design of
finite-dimensional stabilizing controllers. We will consider here
the case of actuation arrangements that are characterized by a
redundancy with respect to the number of unstable modes in the
system: namely, the number of inputs is assumed to be larger
than the dimension of the unstable subsystem. This property
allows in turn to introduce a suitable allocation scheme that
aims at exploiting the best control configuration, according to
prescribed optimal criteria, among all the configurations that
provide the same response in the unstable subsystem. In partic-
ular, two allocation strategies will be described: gradient descent
allocation and linear quadratic allocation.
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The article is structured as follows. The basic setup is given in
Section 2, addressing also the assumptions needed and provid-
ing the description of the problem to be investigated. The main
results are given in Section 3, which covers the tasks of stabi-
lization and input allocation. A simulation study in Section 4
supports and corroborates the theoretical results. Finally, conclu-
sions are drawn in Section 5.

2 | Problem Setup

Consider the open domain𝑄 = (𝑎, 𝑏) × (𝑐, 𝑑) and the interval =
(0, +∞). In the parabolic cylinderΩ = 𝑄 × , we are interested in
the Cauchy–Dirichlet problem

𝑤𝑡 = 𝜇Δ𝑤 + 𝜅𝑤 +

𝑚∑
𝑗=1
𝜒𝑗(𝑥, 𝑦)𝑢𝑗(𝑡)

𝑤(𝑡, ⋅, ⋅) = 0 on 𝜕𝑄

𝑤(0, 𝑥, 𝑦) = 𝑤0(𝑥, 𝑦)

(1)

where Δ denotes the 2D Laplacian operator Δ ∶= 𝜕𝑥𝑥 + 𝜕𝑦𝑦 ,
𝜇, 𝜅 > 0 are positive scalars, and 𝜒𝑗(𝑥, 𝑦) are the indicator func-
tions of a given family of disjoint closed sets Ω𝑗 ⊂ 𝑄 of positive
measure with, that is,

|Ω𝑗| > 0, 𝜒𝑗(𝑥, 𝑦) =

{
1 (𝑥, 𝑦) ∈ Ω𝑗
0 (𝑥, 𝑦) ∉ Ω𝑗

The functions of time 𝑢𝑗(𝑡), 𝑗 = 1, . . . , 𝑚, are the available con-
trol inputs. It is worth stressing that the actuation arrangement
can be very diversified and heterogeneous, as the one sketched in
Figure 1.

2.1 | Background Results

Consider the operator  ∶= 𝜇Δ + 𝜅Id, defined over 𝐿2(𝑄) with
domain dom() ∶= {𝜐 ∈ 𝐻1

0(𝑄)}. Such operator is self-adjoint
and has a compact resolvent, this implying that its spectrum is
countable, with real eigenvalues having finite multiplicity [17].
Accordingly, there exists a Hilbert basis {𝑒𝑗}+∞𝑗=1 ⊂ 𝐿

2(𝑄) com-
posed by eigenfuctions of . Under the assumption 𝜇, 𝜅 > 0,
the spectrum of the operator  is guaranteed to contain a finite
number 𝑁 ∈ ℕ ∪ {0} of non-negative eigenvalues, counted with
multiplicity, and an infinite number of negative eigenvalues. In

particular, arranging the eigenvalues {𝜆𝑗}𝑗∈ℕ in decreasing order,
one has

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑁
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

∈[0,+∞)

> 𝜆𝑁+1 ≥ 𝜆𝑁+2 ≥ . . . ..
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

∈(−∞,0)

Accordingly, the parabolic equation

𝑤𝑡 = 𝑤
is characterized by a finite-dimensional unstable part and an
infinite-dimensional stable part. The finite-dimensional sub-
space spanned by the first 𝑁 eigenfunctions corresponds to the
unstable part of the system, whereas the eigenfunctions 𝑒𝑗 with
𝑗 ≥ 𝑁 + 1 define the stable part of the system.

2.2 | Technical Assumptions

Let us now give a few assumptions to be used next.

Assumption 1. (boundedness and regularity). The ini-
tial condition is sufficiently regular, with 𝑤0(𝑥, 𝑦) ∈ 𝐻

1
0(𝑄). The

inputs 𝑢𝑗(𝑡) are assumed to be belong to the space of locally
bounded and continuous functions, denoted by  (0, +∞). The
actuation sets Ω𝑗 are assumed to have a Lipschitz boundary.

Assumption 2. (overactuation). We assume that the num-
ber of unstable modes 𝑁 is less than the number of actuation
regions𝑚, that is,

𝑁 < 𝑚

Assumption 1 guarantees that, for any choice of the inputs within
the admissible set  (0, +∞), system (1) admits a unique mild
solution [18]. In particular, for functions 𝑤(𝑡, 𝑥, 𝑦) satisfying (1)
in the mild sense, the operation of differentiation under the
integral sign is allowed. The condition in Assumption 2 entails
instead, restricting the focus on the unstable states only, a redun-
dancy in the system controllability, which in turn allows to allo-
cate the actual control inputs according to some optimal criteria.

2.3 | Problem Statement

The problem studied and solved in this letter is twofold:

FIGURE 1 | Example of actuation arrangement with𝑚 = 3 sets.
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• Globally stabilize the equilibrium 𝑤(𝑡, 𝑥, 𝑦) = 0 of
Equation (1) with respect to the 𝐿2-norm.

• Allocate the redundant control effort, hinging on
Assumption 2, according to a given optimization policy.

3 | Control Design

3.1 | Spectral Decomposition

Let us now define explicitly the Hilbert basis of eigenfunctions
of , providing an equivalent representation of (1) as the collec-
tion of infinitely many ODEs with decoupled drifts. An eigenpair
(𝜆, 𝜑(𝑥, 𝑦)) ∈ ℝ × 𝐿2(𝑄)must satisfy

𝜑 = 𝜇Δ𝜑 + 𝜅𝜑 = 𝜆𝜑
along with the homogeneous Dirichlet conditions on 𝜕𝑄.
Observing that the function 𝜓(𝑧) = sin(𝛼𝑧 − 𝛽) satisfies 𝜓′′(𝑧) =
−𝛼2 sin(𝛼𝑧 − 𝛽), we can easily see that 𝜑(𝑥, 𝑦) ∶= 𝛾 sin(𝛼1𝑥 −
𝛽1) sin(𝛼2𝑦 − 𝛽2) satisfies Δ𝜑 = −(𝛼2

1 + 𝛼
2
2)𝜑 for any 𝛾 ≠ 0. Now,

imposing the boundary conditions, we get the following expres-
sions for the coefficients 𝛼𝑖, 𝛽𝑖 ∶

𝛼1 = 𝛼1(𝑟) ∶=
𝑟𝜋

𝑏 − 𝑎
, 𝛽1 = 𝛽1(𝑟) ∶=

𝑟𝜋𝑎

𝑏 − 𝑎
𝑟 ∈ ℕ ⧵ {0}

𝛼2 = 𝛼2(𝑠) ∶=
𝑠𝜋

𝑑 − 𝑐
, 𝛽2 = 𝛽2(𝑠) ∶=

𝑠𝜋𝑐

𝑑 − 𝑐
𝑠 ∈ ℕ ⧵ {0}

This shows that all eigenpairs of the operator  are given by
(𝜆̃𝑟,𝑠, 𝜑𝑟,𝑠(𝑥, 𝑦)) with

𝜆̃𝑟,𝑠 = −𝜇(𝛼
2
1(𝑟) + 𝛼

2
2(𝑠)) + 𝜅

𝜑𝑟,𝑠(𝑥, 𝑦) = 𝛾𝑟,𝑠 sin(𝛼1(𝑟)𝑥 − 𝛽1(𝑟)) sin(𝛼2(𝑠)𝑦 − 𝛽𝑠(𝑠))

for (𝑟, 𝑠) ∈ ℕ2 and where 𝛾𝑟,𝑠 are normalization constants.
Observing that the coefficients 𝛼1(𝑟), 𝛼2(𝑠) are strictly increas-
ing with respect to 𝑟, 𝑠, for any given 𝜅 > 0 we have that only a
finite number of choices (𝑟, 𝑠) ∈ ℕ may lead to a positive eigen-
value 𝜆̃𝑟,𝑠 > 0, this being consistent with the property of the unsta-
ble part of the equation of being finite-dimensional. Sorting the
eigenvalues in decreasing order, we can set

𝜆1 ∶= 𝜆̃1,1

𝜆2 ∶= 𝜆̃𝑟2 ,𝑠2 where 𝑟2 + 𝑠2 = 3

𝜆3 ∶= 𝜆̃𝑟3 ,𝑠3 where 𝑟3 + 𝑠3 = 3 ∧ 4

𝜆4 ∶= 𝜆̃𝑟4 ,𝑠4 where 𝑟4 + 𝑠4 = 3 ∧ 4 ∧ 5

⋮

𝜆𝑁 ∶= 𝜆̃𝑟𝑁,𝑠𝑁 where 𝑟𝑁 + 𝑠𝑁 = 3 ∧ · · · ∧ 𝑁 + 1

𝜆𝑁+1 ∶= 𝜆̃𝑟𝑁+1 ,𝑠𝑁+1
where 𝑟𝑁+1 + 𝑠𝑁+1 = 3 ∧ · · · ∧ 𝑁 + 2

⋮

⋮

with 𝑁 such that 𝜆𝑁 ≥ 0 and 𝜆𝑗 < 0 for any 𝑗 ≥ 𝑁 + 1. Accord-
ingly, the equation can be recast in the diagonal form

Σ+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑤̇1(𝑡) = 𝜆1𝑤1(𝑡) +

𝑚∑
𝑗=1
𝑏1,𝑗𝑢𝑗(𝑡)

𝑤̇2(𝑡) = 𝜆2𝑤2(𝑡) +

𝑚∑
𝑗=1
𝑏2,𝑗𝑢𝑗(𝑡)

⋮

𝑤̇𝑁(𝑡) = 𝜆𝑁𝑤𝑁(𝑡) +

𝑚∑
𝑗=1
𝑏𝑁,𝑗𝑢𝑗(𝑡)

Σ−

⎧⎪⎪⎨⎪⎪⎩
𝑤̇𝑁+1(𝑡) = 𝜆𝑁+1𝑤𝑁+1(𝑡) +

𝑚∑
𝑗=1
𝑏𝑁+1,𝑗𝑢𝑗(𝑡)

⋮

⋮

where, for 𝑖 = 1, 2, . . . , 𝑁,𝑁 + 1, . . . , one has

𝑤𝑖(𝑡) ∶= ∫𝑄 𝑤(𝑡, 𝑥, 𝑦)𝜑𝑟𝑖 ,𝑠𝑖 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 (2)

𝑏𝑖,𝑗 ∶= ∫𝑄 𝜒𝑗(𝑥, 𝑦)𝜑𝑟𝑖 ,𝑠𝑖 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∫Ω𝑗 𝜑𝑟𝑖 ,𝑠𝑖 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
(3)

We can divide the ODEs in two groups, denoted by Σ+ and Σ−
and indicating, respectively, the unstable and the stable dynam-
ics. In particular,Σ+ corresponds to the finite-dimensional system
governing the dynamics of the first 𝑁 states {𝑤1(𝑡), . . . , 𝑤𝑁(𝑡)}.

3.2 | Stabilizing Control Law

The stabilization of the system can be carried out by focus-
ing on the unstable subsystem Σ+ only. Furthermore, a
finite-dimensional controller can be used. To this end, let us
rewrite in compact form the dynamics of Σ+ as follows

𝑤̇+ = Λ+𝑤+ + 𝐵𝑢 (4)

where we have set 𝑤+(𝑡) ∶= [𝑤1(𝑡) · · · 𝑤𝑁(𝑡)]
⊤, 𝑢(𝑡) ∶=

[𝑢1(𝑡) · · · 𝑢𝑚(𝑡)]
⊤ and

Λ+ ∶=

⎡⎢⎢⎢⎢⎢⎣

𝜆1 0 · · · 0
0 𝜆2 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · 𝜆𝑁

⎤⎥⎥⎥⎥⎥⎦
𝐵 ∶=

⎡⎢⎢⎢⎢⎢⎣

𝑏1,1 𝑏1,2 · · · 𝑏1,𝑚

𝑏2,1 𝑏2,2 · · · 𝑏2,𝑚

⋮ ⋮ ⋱ ⋮

𝑏𝑁,1 𝑏𝑁,2 · · · 𝑏𝑁,𝑚

⎤⎥⎥⎥⎥⎥⎦
Assumption 3. (stabilizability). The pair of matrices
(Λ+, 𝐵) is controllable.

It is easy to check that a sufficient condition for controllability is
that the eigenvalues 𝜆1, . . . , 𝜆𝑁 are all distinct, and that for any
𝓁 = 1, . . . , 𝑁 there exists 𝑖0 = 1, . . . , 𝑚 such that 𝑏𝓁,𝑖0 ≠ 0. In the
following counterexample we will show that the controllability
of Σ+ is not a trivial assumption, as there exist critical choices of
system parameters and actuation sets that lead to uncontrollable
unstable dynamics.

Example 1. Let us consider the domain 𝑄 = [0, 1]2, and
the reaction diffusion-equation with 𝜇 = 1, 𝜅 = 30 and 𝑚 = 4
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actuation sets. The system admits three positive eigenvalues 𝜆1 =
−2𝜋2 + 30, 𝜆2 = 𝜆3 = −3𝜋2 + 30, whereas all other eigenvalues,
which are of the form 𝜆𝑗 = −𝑛𝑗𝜋2 + 20 with 𝑛𝑗 ≥ 4, are negative.
The eigenfunctions associated to 𝜆𝑖, 𝑖 = 1, 2, 3, are

𝜑1,1(𝑥, 𝑦) = 2 sin(𝜋𝑥) sin(𝜋𝑦)

𝜑2,1(𝑥, 𝑦) = 2 sin(2𝜋𝑥) sin(𝜋𝑦)

𝜑1,2(𝑥, 𝑦) = 2 sin(𝜋𝑥) sin(2𝜋𝑦)

Then selecting the numbers 0 < 𝑥1 < 𝑥2 < 𝑧2 < 𝑥3 < 𝑧3 < 𝑥4 <
𝑧4 < 1 and 𝜖 ∈ (0, 1

2
), it is straightforward to verify that the actu-

ation sets

Ω1 ∶= [−𝑥1, 𝑥1] × [𝜖, 1 − 𝜖]

Ω2 ∶= {[−𝑥2, −𝑧2] ∪ [𝑧2, 𝑥2]} × [𝜖, 1 − 𝜖]

Ω3 ∶= {[−𝑥3, −𝑧3] ∪ [𝑧3, 𝑥3]} × [𝜖, 1 − 𝜖]

Ω4 ∶= {[−𝑥4, −𝑧4] ∪ [𝑧4, 𝑥4]} × [𝜖, 1 − 𝜖]

satisfy ∫
Ω𝑗
𝜑2,1(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0, thus yielding 𝑏2,𝑗 = 0 for any 𝑗 =

1, . . . , 4 and preventing the system from being controllable.

The previous counterexample highlights the importance of a
good shape and a good placement for the actuation sets Ω𝑗 .
Now, under Assumption 3, a stabilizing control law for the unsta-
ble subsystem Σ+ can be obtained, for instance, with a tradi-
tional assignment of poles by selecting a gain matrix 𝐾 ∈ ℝ𝑚×𝑁
such that

𝜎(Λ+ − 𝐵𝐾) ⊂ ℂ− (5)

By this choice, the stability of the whole system can be inferred
by the cascade arguments exploited in the following fact (see also
Figure 2). For the sake of simplicity, we introduce the compact
notation 𝑏𝑖,∗ ∶= [𝑏𝑖,1 · · · 𝑏𝑖,𝑚], 𝑖 ≥ 𝑁 + 1, to indicate the input
matrices appearing in the stable subsystem.

Fact 1. The adoption of the feedback control 𝑢 = −𝐾𝑤+
entails an exponentially stable closed-loop dynamics for the
finite-dimensional subsystem, denoted from now on by Σ′+ to
avoid confusion with the open-loop dynamics, with

𝑤̇+ = (Λ+ − 𝐵𝐾)𝑤+ (6)

The overall system dynamics can be then seen as a countable
collection of decoupled cascade interconnections of (6) with
one-dimensional exponentially stable equations (with 𝜆𝑖 < 0
and gains 𝑏𝑖,∗𝐾 for 𝑖 = 𝑁 + 1, 𝑁 + 2, . . . ). By the stability of
cascade interconnections of stable systems, each element of this

collection is a stable system and therefore stability of the whole
dynamics is guaranteed.

Now, based on Fact 1 and recalling the isometry relationship 𝜄 ∶
𝐿2(𝑄)→ 𝓁2 defined by

𝜄(𝑤(𝑥, 𝑦)) = {𝑤𝑖}𝑖∈ℕ, 𝑤𝑖 = ∫𝑄 𝑤(𝑥, 𝑦)𝜑𝑟𝑖 ,𝑠𝑖 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
and fulfilling ||𝑤||2

𝐿2(𝑄)
=
∑
𝑖∈ℕ
𝑤2
𝑖 (7)

the exponential decay of 𝑤𝑟,𝑠(𝑡) implies the asymptotic conver-
gence to zero of the 𝐿2-norm. Let us convey the above discussion
in a formal statement.

Theorem 1. Consider the reaction-diffusion system ( 1), under
Assumptions 1, 2, and 3. Pick a feedback gain 𝐾 ∈ ℝ𝑚×𝑁 such
that the condition (5) is satisfied. Then the finite-dimensional
inputs

𝑢𝑗(𝑡) ∶= −

𝑁∑
𝑖=1
𝐾𝑗,𝑖 ∫𝑄 𝑤(𝑡, 𝑥, 𝑦)𝜑𝑟𝑖 ,𝑠𝑖 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

provide global exponential stabilization of (1) in the sense of the
𝐿2-norm, that is,

lim
𝑡→+∞

||𝑤(𝑡, ⋅, ⋅)||𝐿2(𝑄) = 0

Proof. Focusing on the finite-dimensional subsystem Σ+ in (6),
let us denote by

𝜚 ∶= min
𝜚∈𝜎(Λ+−𝐵𝐾)

|Re(𝜚)|
By standard arguments from linear systems, there exists one pos-
itive constant 𝐶0 such that

|𝑤+(𝑡)| ≤ 𝐶0𝑒
−𝜚𝑡|𝑤+(0)|

For each of the states 𝑤𝑖(𝑡) with 𝑖 ≥ 𝑁 + 1, we can instead com-
pute the following bound1:

|𝑤𝑖(𝑡)| ≤ 𝐶𝑗𝑒−|𝜆𝑖 |𝑡|𝑤𝑖(0)|
+ |𝑏𝑖,∗||𝐾|𝐶0(|𝜆𝑖| − 𝜚)−1(𝑒−𝜚𝑡 − 𝑒−|𝜆𝑖 |𝑡)|𝑤+(0)|

Now, recalling that by construction
∑+∞
𝑖=𝑁+1|𝑏𝑖,∗|2 ≤ ∑𝑚

𝑗=1|Ω𝑗|2,
by simple algebraic manipulations we obtain that

∑+∞
𝑖=1 |𝑤𝑖(𝑡)|2

vanishes exponentially as 𝑡 → +∞. Finally, invoking the isometry
(7), the conclusion follows. ◽

The previous result delivers the recipe for designing a closed-form
stabilizing controller for (1), thus addressing item (i) of
Section 2.3.

FIGURE 2 | Sketch of the collection of cascade interconnections.
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3.3 | Optimal Input Allocation

Next step will be related to exploiting the overactuation of the sys-
tem, hinging on Assumption 2 which results in the redundancy
condition

𝑝 ∶= rank(𝐵) ≤ 𝑚 < 𝑁 (8)

The previous rank condition implies that a full column rank
matrix 𝐵⊥ ∈ ℝ𝑁×𝑞 , with 𝑞 ∶= 𝑁 − 𝑝 ≥ 1, exists such that

𝐵𝐵⊥𝑣 = 0 ∀𝑣 ∈ ℝ𝑞 (9)

As a consequence, the control input

𝑢 = −𝐾𝑤+ + 𝐵⊥𝑣

will produce exactly the same response in the upper subsystem,
no matter what the signal 𝑣 actually is. On the other hand, the
signal 𝑣 may in principle affect the dynamics of the stable sub-
systems Σ−,𝑖 due to cascade effects. In fact, in general, one must
expect 𝑏𝑖,⋆𝐵⊥𝑣 ≠ 0 for 𝑖 ≥ 𝑁 + 1. We will now discuss possible
criteria to select this additional signal 𝑣 in order to optimize
the response of Σ−,𝑖 , this being the goal described in item ii) of
Section 2.3. In particular, we may design 𝑣 either as a feedback
(static or dynamic) from the states 𝑤+ only, or as a function of
some of the 𝑤𝑖 too, with 𝑖 ≥ 𝑁 + 1. We will address two differ-
ent optimization problems, namely gradient based allocation and
linear quadratic allocation, covering both feedback structures.

3.3.1 | Gradient Based Allocation

Looking at the dynamics of the subsystems Σ−,𝑖 , the input 𝑢 =
−𝐾𝑤+ + 𝐵⊥𝑣 acts as a perturbation and it would make sense to
try to keep it as small as possible. Towards this goal, let us consider
a cost function (𝑢), where  is convex, continuously differen-
tiable and satisfies (0) = 0. Accordingly, by using the gradient
descent principle, we can define the following dynamic allocation
scheme

𝑢 = −𝐾𝑤+ + 𝐵⊥𝑣

𝑣̇ = −𝜂𝐵⊤⊥∇(−𝐾𝑤+ + 𝐵⊥𝑣)
(10)

where 𝜂 > 0 is a descent rate parameter. The aim of the alloca-
tion policy (10) is to make the auxiliary input 𝑣 dynamically track
the value that minimizes the overall control effort. In this regard
let us stress that, thanks to the convexity of (⋅), the dynamics
of 𝑣 in (10) is stable and therefore the cascade argument used
in Theorem 1 still holds for 𝑢 = −𝐾𝑤+ + 𝐵⊥𝑣. It is worth notic-
ing that, in the simple case of (𝑢) = |𝑢|2, the allocation scheme
reduces to the linear dynamics

𝑢 = −𝐾𝑤+ + 𝐵⊥𝑣

𝑣̇ = 2𝜂𝐵⊤⊥𝐾𝑤+ − 2𝜂𝐵⊤⊥𝐵⊥𝑣
(11)

3.3.2 | Linear Quadratic Allocation

Consider now a different problem. Pick a number 𝑀 ≥ 1 and
set 𝑤̃ ∶= [𝑤𝑁+1 · · · 𝑤𝑁+𝑀]

⊤. The coupled (finite-dimensional)
dynamics of (𝑤+, 𝑤̃), under the control 𝑢 = −𝐾𝑤+ + 𝐵⊥𝑣, is

[
𝑤̇+
̇̃𝑤

]
=

[
Λ+ − 𝐵𝐾 0
−𝐵𝑀𝐾 Λ̃𝑀

]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=∶𝐴♯

[
𝑤+

𝑤̃

]
+

[
0𝑁×𝑞
𝐵𝑀𝐵⊥

]
⏟⎴⏟⎴⏟
=∶𝐵♯

𝑣

where

Λ̃𝑀 ∶=

⎡⎢⎢⎢⎢⎢⎣

𝜆𝑁+1 0 · · · 0
0 𝜆𝑁+2 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · 𝜆𝑁+𝑀

⎤⎥⎥⎥⎥⎥⎦
𝐵𝑀 ∶=

⎡⎢⎢⎢⎢⎢⎣

𝑏𝑁+1,∗

𝑏𝑁+2,∗

⋮

𝑏𝑁+𝑀,∗

⎤⎥⎥⎥⎥⎥⎦
Pick a positive semi-definite matrix 𝑌 = 𝑌⊤ ≽ 0 with 𝑌 ∈ ℝ𝑀×𝑀
and a positive definite matrix 𝑅 = 𝑅⊤ ≻ 0 with 𝑅 ∈ ℝ𝑞×𝑞 , and
define the quadratic cost function

 (𝑣) = ∫
+∞

0
(𝑤̃⊤𝑌𝑤̃ + 𝑣⊤𝑅𝑣)𝑑𝑡 (12)

In this way, the allocation problem can be recast as a LQR
problem for 𝑤̃ coupled with𝑤+, which acts as the state of a stable
exosystem. To this end, let 𝑃 = 𝑃⊤ ≻ 0, with 𝑃 ∈ ℝ(𝑁+𝑀)×(𝑁+𝑀),
be the solution to the algebraic Riccati equation

𝑃𝐵♯𝑅
−1𝐵⊤

♯
𝑃 − 𝑃𝐴♯ − 𝐴

⊤
♯
𝑃 − blkdg(0𝑁×𝑁, 𝑌) = 0 (13)

Then the following result holds true.

Proposition 1. Consider the coupled subsystem for (𝑤+, 𝑤̃)
given by the 𝑁-dimensional unstable subsystem and an
arbitrary—but finite—choice of 𝑀 components of the stable
subsystem. Let 𝐾 be defined as in Theorem 1, and 𝐵⊥ defined as in
(9). Consider the allocation policy

𝑢 = −𝐾𝑤+ + 𝐵⊥(𝐺+𝑤+ + 𝐺̃𝑤̃) (14)

where [𝐺+ 𝐺̃] ∶= −𝑅−1𝐵⊤
♯
𝑃, with 𝑃 = 𝑃⊤ ≻ 0 solution to the ARE

(13). Then the closed-loop system is exponentially stable, and the
cost function  (𝑣) in (12) is minimized.

Proof. By construction, that is, due to 𝐵𝐵⊥ = 0, the control law
in (14) preserves the closed-loop dynamics (6) for 𝑤+, which is
exponentially stable thanks to the choice of the gain 𝐾. More-
over, it is well known that the positive-definite solution to the
ARE is stabilizing for the ensuing control system [19, chapt. 8.4],
and therefore the dynamics of the extended system (𝑤+, 𝑤̃) is still
exponentially stable, with a feedback gain [𝐺+ 𝐺̃] guaranteed to
be optimal for the cost function  (𝑣). To conclude, it is enough
to invoke a cascade argument similar to the one used in the proof
of Theorem 1, applied to the cascade interconnections of (𝑤+, 𝑤̃)
with each of the subsystems Σ−,𝑖 , for 𝑖 ≥ 𝑁 +𝑀 + 1. ◽

3.3.3 | Possible Extensions

In the previous subsections, we have illustrated two alternative
allocation policies based on optimization criteria. However, it is
worth stressing that other policies can be adopted as well, for
example to deal with:

• Saturation constraints; the presence of saturation constraints
[10], in the case of redundant actuation sets𝑚 < 𝑁, can also
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be dealt with via control allocation methods, for example
using the redistributed pseudoinverse technique [13].

• Fault-tolerant control; the redundancy can be exploited as
a valuable asset for resilience of the control action. For
instance, the methods proposed in [20] can be readily imple-
mented also in (4), with the aim of preventing possible actu-
ation faults from hindering the stabilization of the unstable
subsystem.

• Set-point regulation; the proposed machinery can be easily
extended to the case where the nominal controller, instead
of being a simple stabilizing feedback 𝑢0 = −𝐾𝑤+, includes

also a feedforward term depending on a given reference sig-
nal 𝜓 ∈ ℝ𝑛𝜓 , that is,

𝑢0 = −𝐾𝑤+ + 𝐾𝜓𝜓

for a suitable gain 𝐾𝜓 ∈ ℝ𝑚×𝑛𝜓 .

4 | Simulations

Let us consider again the system described in Example 1, with
coefficients 𝜇 = 1, 𝜅 = 30 and 𝑚 = 4 actuation sets. Let these

FIGURE 3 | Actuation arrangement for the considered example: the dashed region is unactuated, while the cyan disks indicate the four actuation
regions Ω𝑗 , 𝑗 = 1, . . . , 4.

FIGURE 4 | Allocation using gradient descent policy.
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FIGURE 5 | Allocation using linear quadratic optimization policy.

sets be defined by four disks located at different sectors in
𝑄 = [0, 1]2:

Ω1 ∶= {(𝑥, 𝑦) ∶
√
(𝑥 − 3∕4)2 + (𝑦 − 3∕4)2 ≤ 1∕8}

Ω2 ∶= {(𝑥, 𝑦) ∶
√
(𝑥 − 3∕4)2 + (𝑦 − 1∕4)2 ≤ 1∕8}

Ω3 ∶= {(𝑥, 𝑦) ∶
√
(𝑥 − 1∕4)2 + (𝑦 − 1∕4)2 ≤ 1∕8}

Ω4 ∶= {(𝑥, 𝑦) ∶
√
(𝑥 − 1∕4)2 + (𝑦 − 3∕4)2 ≤ 1∕8}

The actuation arrangement is also illustrated in Figure 3.

Accordingly, the matrix 𝐵 satisfies rank(𝐵) = 3 and reads as

𝐵 =

⎡⎢⎢⎢⎣
0.0472 0.0472 0.0472 0.0472
− 0.0629 −0.0629 0.0629 0.0629
− 0.0629 0.0629 0.0629 −0.0629

⎤⎥⎥⎥⎦
so that the stabilizability Assumption 3 is fulfilled. A quite aggres-
sive stabilizing controller 𝑢 = −𝐾𝑤+ has been selected, with 𝐾
such that

𝜎(Λ+ − 𝐵𝐾) = {−15.4735, −9.2134, −8.3912}

thus resulting in a fast decay of the states𝑤+. Both optimal control
allocation schemes have been considered. In particular, Figure 4
shows the results obtained with the gradient based allocation pol-
icy, using the cost function (𝑢) = |𝑢|2 and the rate coefficient
𝜂 = 30, which lead to a dynamic allocation in the form (11). The
top plot in Figure 4 confirms that the allocation procedure deliv-
ers signals that are completely invisible for the dynamics of 𝑤+.
The middle and bottom plots highlight instead the advantages of

the allocation policy (11) in lowering the control effort and, as a
byproduct, also in reducing the 𝐿2-norm of the full system. Con-
versely, the results obtained with the linear quadratic allocation
policy are collected in Figure 5, with 𝑀 = 4 additional states 𝑤̃
and weighting matrices selected as

𝑌 = 104𝐼4×4, 𝑅 = 1

This choice of weights reflects a priority in the minimization of
the states 𝑤̃ over the minimization of the control effort. Accord-
ingly, the control input is allocated by (14), with 𝑃 being the sta-
bilizing solution of the ARE (13). The top plot in Figure 5 shows
once again the invisibility of the allocation scheme with respect
to the dynamics of 𝑤+. The middle plot illustrate the efficacy of
the allocation policy in shrinking the size of the states 𝑤̃, consis-
tently with the minimization of the cost index  (𝑢) defined as in
(12). Finally, the bottom plot reports the evolution of the 𝐿2-norm
of the complete system, which is characterized by a moderate
reduction when the allocation scheme is implemented.

5 | Conclusions

The stabilization of a 2D unstable parabolic equation with redun-
dant distributed inputs has been considered and tackled based
on spectral decomposition using a suitable Hilbert basis made by
eigenfunctions. Borrowing the tools of the well-established con-
trol allocation framework, the benefits of the underlying redun-
dancy of the actuation arrangement have been exploited, follow-
ing two possible optimization pathways. The first policy, gradi-
ent descent allocation aims at lowering the overall control effort,
whereas the second policy, linear quadratic allocation, guaran-
tees the minimization of a quadratic cost function involving both
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the control input and the state of a finite-dimensional subsystem.
The efficacy of the two considered allocation policies has been
showcased though a numerical simulation study.

The proposed architecture could be further generalized to 3D
parabolic equations, including also additional allocation criteria
such as those reported at the end of Section 3.3. An interesting
future extension could also be devoted to merging the proposed
allocation framework with more general synthesis algorithms for
finite-dimensional controllers like, for example, the one recently
proposed in [21].
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Endnotes
1 It is assumed here |𝜆𝑗| ≠ 𝜚. In the special case of equality among the two

values, a slightly different bound can be inferred.
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