Antibiotic resistance is one of the most serious global health threats. Therefore, there is a need to develop antimicrobial agents with new mechanisms of action. Targeting of bacterial cystathionine gamma-lyase (bCSE), an enzyme essential for bacterial survival, is a promising approach to overcome antibiotic resistance. Here, we described a series of (heteroarylmethyl)benzoic acid derivatives and evaluated their ability to inhibit bCSE or its human ortholog hCSE using known bCSE inhibitor NL2 as a lead compound. Derivatives bearing the 6-bromoindole group proved to be the most active, with IC50 values in the midmicromolar range, and highly selective for bCSE over hCSE. Furthermore, none of these compounds showed significant toxicity to HEK293T cells. The obtained data were rationalized by ligand-based and structure-based molecular modeling analyses. The most active compounds were also found to be an effective adjunct to several widely used antibacterial agents against clinically relevant antibiotic-resistant strains of such bacteria as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most potent compounds, 3h and 3i, also showed a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. Finally, compound 3i manifested potentiating activity in pneumonia, sepsis, and infected-wound in vivo models.
(Heteroarylmethyl)benzoic Acids as a New Class of Bacterial Cystathionine γ-Lyase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling / Golovina, Anastasia; Proia, Eleonora; Fiorentino, Francesco; Yunin, Maxim; Kasatkina, Maria; Zigangirova, Nailya; Soloveva, Anna; Sysolyatina, Elena; Ermolaeva, Svetlana; Novikov, Roman; Silonov, Sergei; Pushkin, Sergei; Mladenović, Milan; Isakova, Julia; Belik, Albina; Nawrozkij, Maxim; Rotili, Dante; Ragno, Rino; Ivanov, Roman. - In: ACS INFECTIOUS DISEASES. - ISSN 2373-8227. - 10:6(2024), pp. 2127-2150. [10.1021/acsinfecdis.4c00136]
(Heteroarylmethyl)benzoic Acids as a New Class of Bacterial Cystathionine γ-Lyase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling
Proia, Eleonora;Fiorentino, Francesco;Rotili, Dante;Ragno, Rino;
2024
Abstract
Antibiotic resistance is one of the most serious global health threats. Therefore, there is a need to develop antimicrobial agents with new mechanisms of action. Targeting of bacterial cystathionine gamma-lyase (bCSE), an enzyme essential for bacterial survival, is a promising approach to overcome antibiotic resistance. Here, we described a series of (heteroarylmethyl)benzoic acid derivatives and evaluated their ability to inhibit bCSE or its human ortholog hCSE using known bCSE inhibitor NL2 as a lead compound. Derivatives bearing the 6-bromoindole group proved to be the most active, with IC50 values in the midmicromolar range, and highly selective for bCSE over hCSE. Furthermore, none of these compounds showed significant toxicity to HEK293T cells. The obtained data were rationalized by ligand-based and structure-based molecular modeling analyses. The most active compounds were also found to be an effective adjunct to several widely used antibacterial agents against clinically relevant antibiotic-resistant strains of such bacteria as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most potent compounds, 3h and 3i, also showed a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. Finally, compound 3i manifested potentiating activity in pneumonia, sepsis, and infected-wound in vivo models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.