The generating functional W[J] of Euclidean correlators of twist-2 operators in SU(N) Yang-Mills theory admits the 't Hooft large-N expansion W[J]=W_{sphere}[J]+W_{torus}[J]. Nonperturbatively, W_{sphere}[J] is a sum of tree diagrams involving glueball propagators and vertices, while W_{torus}[J] is a sum of glueball one-loop diagrams. Moreover, it has been predicted that W_{torus}[J] should admit the structure of the logarithm of a functional determinant summing glueball one-loop diagrams. We work out in a closed form the ultraviolet (UV) asymptotics of W_{sphere}[J,λ]∼W_{asym sphere}[J,λ] and W_{torus}[J,λ]∼W_{asym torus}[J,λ] in the coordinate representation as all the coordinates of the correlators are uniformly rescaled by a factor λ→0. Remarkably, we verify the above prediction that W_{asym torus}[J,λ] -- being asymptotic in the UV to W_{torus}[J,λ] -- admits the structure of the logarithm of a functional determinant as well. Hence, the computation above sets strong UV asymptotic constraints on the nonperturbative solution of large-N YM theory and it may be a pivotal guide for the search of such a solution.

UV asymptotics of n-point correlators of twist-2 operators in SU(N) Yang-Mills theory / Bochicchio, Marco; Papinutto, Mauro; Scardino, Francesco. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:5(2023), pp. 1-32. [10.1103/PhysRevD.108.054023]

UV asymptotics of n-point correlators of twist-2 operators in SU(N) Yang-Mills theory

Bochicchio, Marco
;
Papinutto, Mauro
;
Scardino, Francesco
2023

Abstract

The generating functional W[J] of Euclidean correlators of twist-2 operators in SU(N) Yang-Mills theory admits the 't Hooft large-N expansion W[J]=W_{sphere}[J]+W_{torus}[J]. Nonperturbatively, W_{sphere}[J] is a sum of tree diagrams involving glueball propagators and vertices, while W_{torus}[J] is a sum of glueball one-loop diagrams. Moreover, it has been predicted that W_{torus}[J] should admit the structure of the logarithm of a functional determinant summing glueball one-loop diagrams. We work out in a closed form the ultraviolet (UV) asymptotics of W_{sphere}[J,λ]∼W_{asym sphere}[J,λ] and W_{torus}[J,λ]∼W_{asym torus}[J,λ] in the coordinate representation as all the coordinates of the correlators are uniformly rescaled by a factor λ→0. Remarkably, we verify the above prediction that W_{asym torus}[J,λ] -- being asymptotic in the UV to W_{torus}[J,λ] -- admits the structure of the logarithm of a functional determinant as well. Hence, the computation above sets strong UV asymptotic constraints on the nonperturbative solution of large-N YM theory and it may be a pivotal guide for the search of such a solution.
2023
quantum field theory; renormalization group; Yang-Mills theory
01 Pubblicazione su rivista::01a Articolo in rivista
UV asymptotics of n-point correlators of twist-2 operators in SU(N) Yang-Mills theory / Bochicchio, Marco; Papinutto, Mauro; Scardino, Francesco. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:5(2023), pp. 1-32. [10.1103/PhysRevD.108.054023]
File allegati a questo prodotto
File Dimensione Formato  
Bochicchio_UV-asymptotics_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 488.62 kB
Formato Adobe PDF
488.62 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact