We propose a sensor-based scheme for safe robot navigation in a crowd of moving humans. It consists of two modules, i.e., the crowd prediction and motion generation module, which run sequentially during every sampling interval. Using information acquired online by an on-board sensor, the crowd prediction module foresees the future motion of the humans in the robot surroundings. Based on such prediction, the motion generation module produces feasible commands to safely drive the robot among the humans by combining a nonlinear Model Predictive Control (NMPC) algorithm with collision avoidance constraints formulated via discrete-time Control Barrier Functions (CBFs). We show the effectiveness of the proposed approach via simulations obtained in CoppeliaSim on the Pioneer 3-DX mobile robot in scenarios of different complexity.

Safe Robot Navigation in a Crowd Combining NMPC and Control Barrier Functions / Vulcano, V.; Tarantos, S. G.; Ferrari, P.; Oriolo, G.. - (2022), pp. 3321-3328. (Intervento presentato al convegno 61st IEEE Conference on Decision and Control, CDC 2022 tenutosi a Cancun, Mexico) [10.1109/CDC51059.2022.9993397].

Safe Robot Navigation in a Crowd Combining NMPC and Control Barrier Functions

Vulcano V.;Tarantos S. G.
;
Ferrari P.
;
Oriolo G.
2022

Abstract

We propose a sensor-based scheme for safe robot navigation in a crowd of moving humans. It consists of two modules, i.e., the crowd prediction and motion generation module, which run sequentially during every sampling interval. Using information acquired online by an on-board sensor, the crowd prediction module foresees the future motion of the humans in the robot surroundings. Based on such prediction, the motion generation module produces feasible commands to safely drive the robot among the humans by combining a nonlinear Model Predictive Control (NMPC) algorithm with collision avoidance constraints formulated via discrete-time Control Barrier Functions (CBFs). We show the effectiveness of the proposed approach via simulations obtained in CoppeliaSim on the Pioneer 3-DX mobile robot in scenarios of different complexity.
2022
61st IEEE Conference on Decision and Control, CDC 2022
robot navigation; safety; NMPC
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Safe Robot Navigation in a Crowd Combining NMPC and Control Barrier Functions / Vulcano, V.; Tarantos, S. G.; Ferrari, P.; Oriolo, G.. - (2022), pp. 3321-3328. (Intervento presentato al convegno 61st IEEE Conference on Decision and Control, CDC 2022 tenutosi a Cancun, Mexico) [10.1109/CDC51059.2022.9993397].
File allegati a questo prodotto
File Dimensione Formato  
Vulcano_Safe-Robot_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1680459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact