In this work, a Physically Unclonable Function (PUF) based on an improved regulated cascode current mirror (IRCCM) is presented. The proposed IRCCM improves the loop-gain of the gain-boosting branch over the conventional RCCM PUF, thereby increasing the output resistance and amplifying the mismatches due to random variations. The introduction of an explicit reference current in the biasing branch of the IRCCM results in lower native unstable bits, good robustness against environmental variations and very stable power consumption. The proposed PUF has been validated through measurement results on a test-chip implemented in a 130 nm CMOS process. The PUF performance was measured for supply voltages between 0.6 and 1.2V, and temperatures ranging from 0 °C to 75 °C. A comparison against similar designs from the literature has shown that the proposed PUF exhibits state of the art performance with improved reliability under supply voltage variations.
A Monostable Physically Unclonable Function Based on Improved RCCMs with 0–1.56% Native Bit Instability at 0.6–1.2 V and 0–75 °C / Della Sala, Riccardo; Bellizia, Davide; Centurelli, Francesco; Scotti, Giuseppe. - In: ELECTRONICS. - ISSN 2079-9292. - 12:3(2023), pp. 1-14. [10.3390/electronics12030755]
A Monostable Physically Unclonable Function Based on Improved RCCMs with 0–1.56% Native Bit Instability at 0.6–1.2 V and 0–75 °C
Della Sala, Riccardo;Bellizia, Davide;Centurelli, Francesco;Scotti, Giuseppe
2023
Abstract
In this work, a Physically Unclonable Function (PUF) based on an improved regulated cascode current mirror (IRCCM) is presented. The proposed IRCCM improves the loop-gain of the gain-boosting branch over the conventional RCCM PUF, thereby increasing the output resistance and amplifying the mismatches due to random variations. The introduction of an explicit reference current in the biasing branch of the IRCCM results in lower native unstable bits, good robustness against environmental variations and very stable power consumption. The proposed PUF has been validated through measurement results on a test-chip implemented in a 130 nm CMOS process. The PUF performance was measured for supply voltages between 0.6 and 1.2V, and temperatures ranging from 0 °C to 75 °C. A comparison against similar designs from the literature has shown that the proposed PUF exhibits state of the art performance with improved reliability under supply voltage variations.File | Dimensione | Formato | |
---|---|---|---|
DellaSala_A Monostable_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
7.95 MB
Formato
Adobe PDF
|
7.95 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.