In this paper, we consider a network of homogeneous LTI hybrid dynamics under time-driven aperiodic jumps and exchanging information over a fixed communication graph. Based on the notion of almost equitable partitions, we explicitly characterize the clusters induced by the network over the nodes and, consequently, the corresponding multi-consensus trajectories. Then, we design a decentralized control ensuring convergence of all agents to the corresponding multi-consensus trajectory. Simulations over an academic example illustrate the results.
Multiconsensus control of homogeneous LTI hybrid systems under time-driven jumps / Cristofaro, A.; Mattioni, M.. - 2022-:(2022), pp. 316-321. (Intervento presentato al convegno 61st IEEE Conference on Decision and Control, CDC 2022 tenutosi a Cancun, Mexico) [10.1109/CDC51059.2022.9992546].
Multiconsensus control of homogeneous LTI hybrid systems under time-driven jumps
Cristofaro A.
;Mattioni M.
2022
Abstract
In this paper, we consider a network of homogeneous LTI hybrid dynamics under time-driven aperiodic jumps and exchanging information over a fixed communication graph. Based on the notion of almost equitable partitions, we explicitly characterize the clusters induced by the network over the nodes and, consequently, the corresponding multi-consensus trajectories. Then, we design a decentralized control ensuring convergence of all agents to the corresponding multi-consensus trajectory. Simulations over an academic example illustrate the results.File | Dimensione | Formato | |
---|---|---|---|
Cristofaro_MulticonsensusControlOf_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Contatta l'autore |
Cristofaro_MulticonsensusControlOf_2022_preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
362.04 kB
Formato
Adobe PDF
|
362.04 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.