We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.

A gradient descent algorithm built on approximate discrete gradients / Moreschini, A.; Mattioni, M.; Monaco, S.; Normand-Cyrot, D.. - (2022), pp. 343-348. (Intervento presentato al convegno 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 tenutosi a Sinaia; Romania) [10.1109/ICSTCC55426.2022.9931872].

A gradient descent algorithm built on approximate discrete gradients

Moreschini A.
;
Mattioni M.;Monaco S.;
2022

Abstract

We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.
2022
26th International Conference on System Theory, Control and Computing, ICSTCC 2022
Modeling; Nonlinear Systems; Optimization; Simulation and CAD Tools
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A gradient descent algorithm built on approximate discrete gradients / Moreschini, A.; Mattioni, M.; Monaco, S.; Normand-Cyrot, D.. - (2022), pp. 343-348. (Intervento presentato al convegno 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 tenutosi a Sinaia; Romania) [10.1109/ICSTCC55426.2022.9931872].
File allegati a questo prodotto
File Dimensione Formato  
Moreschini_AGradientDescent_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 779.93 kB
Formato Adobe PDF
779.93 kB Adobe PDF   Contatta l'autore
Moreschini_AGradientDescent_2022_Preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 655.1 kB
Formato Adobe PDF
655.1 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1661441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact