The scope of the paper is to develop a methodology for finding optimal gaits of a quadruped robot using genetic algorithm, comparing the results to the ones resulting from natural evolution. The optimization is performed over pre-imposed contact forces to find the best shapes that guarantees the minimum en-ergy consumption during a single stride cycle. The dynamic formulation of the four-dimensional model is developed without involving any specific kinematic mechanism for the legs, considering the entire gait spectrum a quadruped can exhibit. The optimization model consists of a set of constraints that ensure the feasibility and stability of the gaits. Results are presented for an optimization re-quiring a constant speed of 1.35 /. The optimal gait was found to be consistent to nature, suggesting that energy consumption is one of the key factors contrib-uting to the evolution of gaiting patterns in quadrupeds. Eventually, a comparison between different existing gait patterns is carried out in terms of foot contact time and energy consumption.
Gait optimization method for quadruped locomotion / Laurenza, Maicol; Pepe, Gianluca; Carcaterra, Antonio. - 2:(2022), pp. 439-449. (Intervento presentato al convegno Second international nonlinear dynamics conference, NODYCON 2021 tenutosi a Roma, Italia) [10.1007/978-3-030-81166-2_39].
Gait optimization method for quadruped locomotion
Maicol Laurenza
Primo
;Gianluca PepeSecondo
;Antonio CarcaterraUltimo
2022
Abstract
The scope of the paper is to develop a methodology for finding optimal gaits of a quadruped robot using genetic algorithm, comparing the results to the ones resulting from natural evolution. The optimization is performed over pre-imposed contact forces to find the best shapes that guarantees the minimum en-ergy consumption during a single stride cycle. The dynamic formulation of the four-dimensional model is developed without involving any specific kinematic mechanism for the legs, considering the entire gait spectrum a quadruped can exhibit. The optimization model consists of a set of constraints that ensure the feasibility and stability of the gaits. Results are presented for an optimization re-quiring a constant speed of 1.35 /. The optimal gait was found to be consistent to nature, suggesting that energy consumption is one of the key factors contrib-uting to the evolution of gaiting patterns in quadrupeds. Eventually, a comparison between different existing gait patterns is carried out in terms of foot contact time and energy consumption.File | Dimensione | Formato | |
---|---|---|---|
Laurenza_Preprint-Gait-optimization_2021.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
562.5 kB
Formato
Adobe PDF
|
562.5 kB | Adobe PDF | |
Laurenza_Gait_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.