Twisted A-harmonic sums are partial sums of a class of zeta values introduced by the first author. We prove some new identities for such sums and we deduce properties of analogues of finite zeta values in the framework of the Carlitz module. In the theory of finite multiple zeta values as introduced by Kaneko and Zagier, finite zeta values are all zero and there is no known non-zero finite multiple zeta value. In the Carlitzian setting the phenomenology is different as we can deduce, from our results, the irrationality of certain finite zeta values.
On twisted A-harmonic sums and Carlitz finite zeta values / Pellarin, F.; Perkins, R.. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - 232:(2021), pp. 355-378. [10.1016/j.jnt.2018.10.018]
On twisted A-harmonic sums and Carlitz finite zeta values
Pellarin F.;
2021
Abstract
Twisted A-harmonic sums are partial sums of a class of zeta values introduced by the first author. We prove some new identities for such sums and we deduce properties of analogues of finite zeta values in the framework of the Carlitz module. In the theory of finite multiple zeta values as introduced by Kaneko and Zagier, finite zeta values are all zero and there is no known non-zero finite multiple zeta value. In the Carlitzian setting the phenomenology is different as we can deduce, from our results, the irrationality of certain finite zeta values.File | Dimensione | Formato | |
---|---|---|---|
Pellarin_preprint_On-twisted_2021.pdf
accesso aperto
Note: Articolo in versione finale non disponibile
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
323.21 kB
Formato
Adobe PDF
|
323.21 kB | Adobe PDF | |
Pellarin_versione-editoriale_On-twisted_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
456.21 kB
Formato
Adobe PDF
|
456.21 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.