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Twisted A-harmonic sums are partial sums of a class of zeta 
values introduced by the first author. We prove some new 
identities for such sums and we deduce properties of analogues 
of finite zeta values in the framework of the Carlitz module. 
In the theory of finite multiple zeta values as introduced by 
Kaneko and Zagier, finite zeta values are all zero and there is 
no known non-zero finite multiple zeta value. In the Carlitzian 
setting the phenomenology is different as we can deduce, from 
our results, the irrationality of certain finite zeta values.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let A = Fq[θ] be the ring of polynomials in an indeterminate θ with coefficients in 
Fq the finite field with q elements and characteristic p, and let K be the fraction field 
of A. We consider variables t1, . . . , ts over K and we write ts for the family of variables 
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(t1, . . . , ts). We write C∞ for the completion K̂ac
∞ of an algebraic closure Kac

∞ of the 
completion K∞ of K at the infinite place corresponding to 1

θ . In this paper, we are 
interested in the zeta-values

ζA(n; s) :=
∑
a∈A+

a(t1) · · · a(ts)
an

, n > 0, s ≥ 0,

with A+ the set of monic polynomials of A, converging in the Tate algebra

Ts = C∞⊗̂Fq
Fq[ts]

in the variables ts and with coefficients in C∞ (with the trivial valuation over Fq[ts]), 
introduced in [11] and studied, for example, in [2–4]. We choose once and for all a 
(q − 1)-th root of −θ in C∞. Let

ω(t) = (−θ)
1

q−1
∏
i≥0

(
1 − t

θqi

)−1

,

be the Anderson–Thakur function, in T = T1 the Tate algebra in the variable t = t1
with coefficients in C∞ (see [1] for one of the first papers in which this function was 
studied and [3] for a more recent treatise of its basic properties). Let us also consider 
the fundamental period π̃ ∈ C∞ of the Fq[t]-linear Carlitz exponential expC : T → T (so 
that ω(t) = expC( π̃

θ−t ), as in [3]). We have the following result (see [2,4]).

Theorem 1 (B. Anglès and the first author). For s ≡ 1 (mod q − 1) and s > 1, there 
exists a polynomial λ1,s ∈ A[ts] such that

ζA(1; s) = π̃λ1,s

ω(t1) · · ·ω(ts)
.

There is no general explicit formula for λ1,s in terms of s but it can be proved that 
this polynomial is of exact degree equal to s−q

q−1 in θ, and Bs := (−1)
s−1
q−1λ1,s is monic. 

For s = 1 Theorem 1 does not hold in the above strong form, but there is an explicit 
formula (see [11]):

ζA(1; 1) = π̃

(θ − t)ω(t) .

These formulas, reminiscent of the classical Euler’s formulas for ζ(2k) (for k > 0) played 
an important role in the arithmetic of function fields yielding various analytic appli-
cations among which an alternate proof of Herbrand–Ribet–Taelman theorem for the 
Carlitz module in [4], or more recently, a proof of a function field analogue of a folkloric 
conjecture for the reduction modulo prime numbers of Bernoulli numbers, in [5].
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One of the reasons for which the polynomials λ1,s contain so much arithmetic infor-
mation is that for s ≡ 1 (mod q − 1) with s > 1, λ1,s is a generator of the Fitting ideal 
of the class A[ts]-module of an appropriate twist of the Carlitz module (see [4, §5]), 
inspired by Taelman’s theory [16] (note that a similar twist of the multiplicative group 
Gm is presently not known). We come now to the content of the present paper.

For d ≥ 0 an integer, we denote by A+(d) the set of monic polynomials of A of 
degree d. We first define the twisted power sum of level s, degree d, and exponent n

Sd(n; s) =
∑

a∈A+(d)

a(t1) · · · a(ts)
an

∈ K[ts],

where, for a polynomial a =
∑

i aiθ
i ∈ A with ai ∈ Fq and a variable t, a(t) denotes the 

polynomial 
∑

i ait
i. Then, we define twisted A-harmonic sums as above, which are the 

sums:

Fd(n; s) =
d−1∑
i=0

Si(n; s) ∈ K[ts], n ∈ Z, s ∈ N, d ∈ N \ {0}.

We are mainly interested in the case n = 1 and s ≡ 1 (mod q−1) (just as in Theorem 1, 
the case n = 1 turns out to be the most relevant). We denote by bi(t) the product 
(t − θ) · · · (t − θq

i−1) ∈ A[t] if i > 0, and we set b0(t) = 1. We also write m = � s−1
q−1� (the 

brackets denote the integer part so that m is the biggest integer ≤ s−1
q−1 ). We set

Πs,d = bd−m(t1) · · · bd−m(ts)
ld−1

∈ K[ts], d ≥ max{1,m}.

The main purpose of the present paper is to show the following result.

Theorem 2. For all integers s ≥ 1, such that s ≡ 1 (mod q − 1), there exists a non-zero 
rational fraction Hs ∈ K(ts)(Y ) such that, for all d ≥ m, the following identity holds:

Fd(1; s) = Πs,dHs(θq
d−m

).

If s = 1, we have the explicit formula

H1 = 1
t1 − θ

.

Further, if s = 1 + m(q − 1) for an integer m > 0, then the fraction Hs is a polynomial 
of A[ts][Y ] with the following properties:

(1 ) For all i, degti(Hs) = m − 1,
(2 ) degY (Hs) = qm−1

q−1 −m.

The polynomial Hs is uniquely determined by these properties.
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Theorem 2 can be seen as a “finite sum analogue” of Theorem 1. It is easy to see, by 
taking the limit n → ∞ in the Tate algebra Ts, that Theorem 2 implies Theorem 1. But 
Theorem 2 contains more information; the process of convergence at the infinite place 
which takes us to Theorem 1 from Theorem 2 suppresses various information encoded 
in the formula of Theorem 2.

It would be nice to understand the arithmetic meaning of the polynomials Hs. For 
instance, it is desirable to know if they are related in some way to Taelman’s class modules 
just as the polynomials λ1,s (as shown in [4]). However, the methods introduced in the 
present paper, essentially elementary and based on polynomial interpolation theory, do 
not seem to be sufficient to give clarity to this question.

1.1. Some consequences and applications

We list below a few consequences of our Theorem 2.

1.1.1. Finite zeta values
Theorem 2 opens a way to the study of finite zeta and multi-zeta values. Let us first 

shortly review the classical setting. We consider, following Zagier, the ring

AQ =

∏
p

Z

pZ⊕
p

Z

pZ

,

the product and the direct sum running over the prime numbers p (1). Two elements 
(ap)p and (bp)p ∈ AQ are equal if and only if ap = bp for all but finitely many p. The 
ring AQ is not a domain. However, there is a natural injective ring homomorphism

Q → AQ

defined by sending r ∈ Q to the class modulo ⊕p
Z
pZ of the sequence of its reductions 

mod p, well defined for almost all p (that is, for all but finitely many p). Therefore, AQ

is a Q-algebra. This algebra is the main recipient for the theory of finite multiple zeta 
values, as in Kaneko’s [9]. For example, for all k > 0, the finite zeta value of exponent k
trivially vanishes in AQ:

ζA(k) :=
(

p−1∑
n=1

1
nk

(mod p)
)

p

= 0 ∈ AQ.

1 It can be considered as a residue ring of the rational adèles AQ. Indeed, there is a natural ring epimor-
phism AQ → AQ sending an adèle (xp)p to the well defined residue (xp (mod p))p.
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More generally, the finite multiple zeta values are defined, for k1, . . . , kr ∈ Z, by

ζA(k1, . . . , kr) =
( ∑

0<n1<···<nk<p

1
nk1

1 · · ·nkr
r

(mod p)
)

p

∈ AQ.

We apply Theorem 2 to show that certain variants of finite zeta values, introduced 
just below, are non-zero. We denote by F s the field Fq(ts), so that F 0 = Fq. As an 
analogue of the ring AQ, we consider the ring

As :=

∏
P

F s[θ]
PF s[θ]⊕

P

F s[θ]
PF s[θ]

,

where the product and the direct sum run over the irreducible monic polynomials of A. 
Ordering the indices of the variables t1, . . . , ts by size induces embeddings A0 ↪→ A1 ↪→
· · · ↪→ As and in the following, we are viewing the rings As embedded one in the other 
as above. Let K1/p∞ be the perfect closure of K, that is, the subfield of an algebraic 
closure Kac of K whose elements x are such that xpi ∈ K for some i (note that this is 
equal to the subfield of Kac whose elements are the x such that xqi ∈ K for some i). 
There is a natural embedding (described in §2.2)

K1/p∞ ⊗Fq
F s

ι−→ As.

Let P ∈ A be an irreducible monic polynomial of degree d in θ; we extend the P -adic 
valuation vP of K to K ⊗Fq

F s by setting it to be the trivial valuation on F s. Then, 
vP (Si(n; s)) ≥ 0 for all 0 ≤ i < d so that vP (Fd(n; s)) ≥ 0 for all n ∈ Z and s ∈ N. In 
particular, we have the finite zeta value of level s and exponent n,

ZA(n; s) :=
(
Fdegθ(P )(n; s) (mod P )

)
P
∈ As.

We consider the following elements,

π̂ :=
(
− 1
P ′

)
P

∈ A×
0 , ω̂(t) :=

(
1

P (t)

)
P

∈ A×
1 , and Π̂n,s := π̂n

ω̂(t1) · · · ω̂(ts)
∈ A×

s ,

where we write t = t1 if s = 1 and n, s are integers such that n ≡ s (mod q − 1) (if R
is a unitary ring, R× denotes the group of invertible elements of R). Here, the dash ′

denotes the derivative with respect to θ in K. It is easy to show that they are indeed 
units of the respective rings.

Our application of Theorem 2 to finite zeta values is the following result.
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Theorem 3. Assume that s ≡ 1 (mod q−1). Then, there exists a non-zero explicit element 
μ1,s ∈ K1/p∞ ⊗Fq

F s such that

ZA(1; s) = Π̂1,sι(μ1,s).

In particular, ZA(1; s) ∈ A×
s and furthermore, it is irrational, in the sense that it does 

not belong to ι(K) ⊗Fq
F s.

Further basic properties of π̂ and ω̂ are given in §2.2.1; for example, we will prove, as 
a particular case of Theorem 17 that π̂ is “irrational”, i.e. it does not belong to ι(K). 
The above irrationality result is deduced from a density estimate for irreducible elements 
of A with a certain ‘backwards digit expansion’ due to Hayes. We are not aware of other 
similar irrationality results in the literature. Moreover, it seems challenging to prove that 
π̂ is transcendental.

1.1.2. Lower coefficients of Hs

We can deduce, from Theorem 2 (see Remark 15):

Corollary 4. For s ≥ q and s ≡ 1 (mod q − 1), −λ1,s is the leading coefficient of Hs as 
a polynomial in Y .

What can be said about the lower coefficients of Hs from Theorem 2? With μ =
qm−1
q−1 −m, we write

Hs =
μ∑

i=0
DiY

i ∈ A[ts][Y ].

We discuss analytic formulas involving the coefficients Di ∈ A[ts]. We recall that Hs

satisfies, by Theorem 2,

Fd(1; s)
Πs,d

= ld−1Fd(1; s)
bd−m(t1) · · · bd−m(ts)

= Hs(θq
d−m

), (1)

for all d ≥ m. Since μ = 0 for s = q, we can restrict our attention to the case s ≥ 2q − 1
in this part.

We set, for all d ≥ m (2),

Γd :=

∏
i≥d

(
1 − θ

θqi

)
∏

i≥d−m

∏s
j=1

(
1 − tj

θqi

) ∈ Ts(K∞).

2 Here, Ts(K∞) denotes the subring of the Tate algebra Ts whose elements are formal series in ts with 
coefficients in K∞.
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In Lemma 19 below, we will define a sequence of polynomials Γs,r ∈ A[ts][Y ] monic 
of degree μ − r in Y related to the series expansion of a certain interpolating series of 
the product Γd. On the basis of this sequence of explicitly computable polynomials, we 
have the following result.

Theorem 5. For all r such that 0 ≤ r ≤ μ − 1, we have:

Dr = − lim
d→∞

(
ω(t1) · · ·ω(ts)

π̃
Γs,r(θq

d−m

)Fd(1; s) +
μ−r∑
i=1

Di+rθ
iqd−m

)
.

It is easy to deduce, from Theorem 5, an explicit identity for the coefficient Dμ−1 (if 
s ≥ 2q − 1). With r = μ − 1, Theorem 5 and the simple identity Γs,μ−1 = Y +

∑s
i=1 ti

imply the next result.

Corollary 6. There exists a polynomial ν1,s ∈ A[ts] such that

lim
d→∞

θq
d−m ∑

i≥d

Si(1; s) = π̃ν1,s

ω(t1) · · ·ω(ts)
,

and

Dμ−1 = ν1,s − (t1 + · · · + ts)λ1,s.

1.1.3. Twisted power sums
If s = 0 in Sd(n, s), we recover the power sums already studied by several authors; see 

Thakur’s [17] and the references therein. For general s these sums have been the object 
of study, for example, in the papers [2,6]. We recall that, in [1, (3.7.4)], Anderson and 
Thakur proved, for all n ≥ 1, that there exists a unique polynomial Hn ∈ A[Y ] (with Y
an indeterminate) of degree in Y which is at most nq

q−1 , such that, for all d ≥ 0,

Sd(n; 0) = Hn(θqd)
Πnlnd

,

where Πn is the n-th Carlitz factorial (see Goss’ [7, Chapter 9]) and ld denotes (−1)d
times the least common multiple of all polynomials of degree d; explicitly, ld is given by 
the product (θ − θq) · · · (θ − θq

d) ∈ A, for d ≥ 1, and l0 := 1. These investigations have 
also been generalized by F. Demeslay in his Ph. D. thesis [6] to the sums Si(n; s) for any 
value of s ≥ 0. F. Demeslay recently proved that, for all n ≥ 1 and s′ ≥ 0, there exists a 
unique rational fraction Qn,s′(ts′ , Y ) ∈ K(ts′ , Y ) such that, for some fixed integer r ≥ 0
(depending on n and s) and for all d,

Sd(n; s′) = l−n
d bd(t1) · · · bd(ts′)Qn,s′(ts′ , θq

d−r

), (2)
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hence providing a complement to [1, (3.7.4)]. Demeslay in fact proves several other 
properties related to the sums Sd(n; s′), and we refer the reader to his thesis [6] for the 
details of his results.

We consider an integer s ≥ q such that s ≡ 1 (mod q − 1). We set m = s−1
q−1 , and 

we choose an integer s′ such that 0 ≤ s′ < s. We set Hs,s′ to be the coefficient of 
tm−1
s′+1 · · · tm−1

s in Hs. It is a polynomial of A[ts′ ][Y ]. It is easy to see that the coefficient 
of tm−1

1 · · · tm−1
s in Hs is one. Hence, the coefficient of tm−1

1 · · · tm−1
s′ in Hs,s′ is also equal 

to one.

Theorem 7. Let s = 1 + m(q − 1), with m ≥ 1, and let 0 ≤ s′ < s. For each d ≥ m − 1, 
we have that

Sd(1; s′) = l−1
d

s′∏
i=1

bd+1−m(ti)Hs,s′(θq
d+1−m

).

This result also implies similar, but less decipherable formulas for general twisted 
power sums Sd(n; s′) that we do not mention here.
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2. Proofs

Basic notation.

• �x�: largest rational integer n such that n ≤ x, with x real number.
• logq(x): logarithm in base q of the real number x > 0.
• 
q(n): sum of the digits of the expansion in base q of the non-negative integer n.
• m: the integer � s−1

q−1� for s ≥ 1.
• [n]: The polynomial θqn − θ ∈ A with n > 0 integer. We also set [0] := 1.
• ln: The polynomial of A defined recursively by l0 = 1 and ln = −[n]ln−1 with n > 0.
• Dn: the polynomials of A defined by D0 = 1 and Dn = [n]Dq

n−1.
• bn: the polynomial (Y − θ) · · · (Y − θq

n−1) ∈ A[Y ] if n > 0 and b0 = 1, for n > 0.
• A(i): for i ≥ 1 an integer, the Fq-vector space of polynomials of A of degree < i in θ. 

We also set A(0) = {0}.
• F s: the field Fq(ts) = Fq(t1, . . . , ts).
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2.1. Proof of Theorem 2

We first consider the separate case of s = 1 and we set t = t1; in fact, this case is 
straightforward. In K[t], for all d ≥ 1,

Fd(1; 1) =
d−1∑
i=0

∑
a∈A+(i)

a−1a(t) = bd(t)
(t− θ)ld−1

, (3)

see for instance [3]. This proves Theorem 2 with s = 1, m = 0 and H1 = 1
t−θ ∈ K(t).

In all the rest of this subsection, we suppose that s ≥ q is an integer such that s ≡ 1
(mod q − 1), and we recall that we have set m = s−1

q−1 . We proceed in several steps: in 
§2.1.1 we analyze the dependence in the degree d of the relations and the occurrence 
of the variable Y , in §2.1.2 we study the interpolation properties of certain series and 
conclude the proof of the first part of Theorem 2, namely, that Hs exists and belongs 
to K(Y )[ts]. Finally, in §2.1.3, we conclude the proof of Theorem 2 by using a density 
argument for the topology of Zariski.

2.1.1. Existence of relations with simple dependence in the degree
We shall write, for a new indeterminate z

Ei = Ei(z) := D−1
i

∏
a∈A(i)

(z − a) ∈ K[z],

where A(i) denotes the Fq-vector space of polynomials of A whose degree is strictly less 
than i in θ. In Goss’ [7, Theorem 3.1.5], the reader can find a proof of the following 
formula, due to Carlitz:

Ei(z) =
i∑

j=0

zq
j

Dj l
qj

i−j

, i ≥ 0.

From this formula the following can be easily deduced:

Proposition 8. The following properties hold, for all i ≥ 0.

(1 ) The polynomial Ei is Fq-linear of degree qi in z, and Ei(θi) = 1.
(2 ) For all a ∈ A(i) and all i ≥ 0 we have

Ei(z)
z − a

∣∣∣∣
z=a

= d

dz
Ei = 1

li
.

(3 ) For all i ≥ 0, we have that Eq
i = Ei + [i + 1]Ei+1. �
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Next, if n is a non-negative integer and if n = n0 + n1q + · · · + nrq
r is its base-q

expansion (with the digits n0, . . . , nr ∈ {0, . . . , q− 1}), we shall consider the polynomial

Gn = En0
0 · · ·Enr

r ∈ K[z],

so that G0 = 1. By Proposition 8, (1), degz(Gn) = n so that every polynomial Q ∈ K[z]
can be written, in a unique way, as a finite sum

Q =
∑
n≥0

cnGn, cn ∈ K.

Lemma 9. Let j := (j1, . . . , jr) be an r-tuple of non-negative integers. There exist poly-
nomials {cj,i}i≥0 ⊂ A[Y ], all but finitely many of which are non-zero, such that for each 
non-negative integer n we have

En+j1En+j2 · · ·En+jr =
∑
i≥0

cj,i(θq
n

)Giqn .

Proof. We proceed by induction on the number of entries r of the tuple j =
(j1, j2, . . . , jr). After reindexing, we may also assume that 0 ≤ j1 ≤ j2 ≤ · · · ≤ jr.

If no q consecutive entries are equal, i.e. jk+1 = jk+2 = · · · = jk+q does not hold for 
any k, we have

En+j1En+j2 · · ·En+jr = Gqn(qj1+qj2+···+qjr ),

and we can set cj,∑ qji (Y ) = 1 in this case.
So, assume that we have jk+1 = jk+2 = · · · = jk+q, for some 0 ≤ k ≤ r− q. Grouping 

these Ei’s together and applying (3) of Proposition 8 above, we obtain

En+j1En+j2 · · ·En+jr =En+j1 · · ·En+jk(En+jk+1)qEn+jk+q+1 · · ·En+jr

=En+j1 · · ·En+jkEn+jk+1En+jk+q+1 · · ·En+jr (4)

+ [n + jk+1 + 1]En+j1 · · ·En+jkEn+jk+1+1En+jk+q+1 · · ·En+jr .

Now, both

e1 := En+j1 · · ·En+jkEn+jk+1En+jk+q+1 · · ·En+jr and

e2 := En+j1 · · ·En+jkEn+jk+1+1En+jk+q+1 · · ·En+jr ,

which occur in the previous displayed line, both come from tuples with r− (q− 1) many 
entries, namely

j := (j1, . . . , jk+1, jk+q+1, . . . , jr) and j := (j1, . . . , jk, jk+1 + 1, jk+q+1, . . . , jr)
1 2



F. Pellarin, R. Perkins / Journal of Number Theory 232 (2022) 355–378 365
and hence by induction we deduce the existence of sets of polynomials {cj1,i(Y )}i≥0 and 
{cj2,i(Y )}i≥0 in A[Y ], all but finitely many of which are non-zero, such that

e1 =
∑
i≥0

cj1,i(θ
qn)Giqn and e2 =

∑
i≥0

cj2,i(θ
qn)Giqn ,

for all n ≥ 0.
Returning with this to (4), we obtain

En+j1En+j2 · · ·En+jr =
∑
i≥0

(
cj1,i(Y ) + (Y qjk+1+1

− θ)cj2,i(Y )
)
Y =θqn

Giqn .

So we let cj,i(Y ) := cj1,i(Y ) + (Y qjk+1+1 − θ)cj2,i(Y ) in this case. �
2.1.2. Interpolation properties

Recall that A(d) denotes the Fq-vector space of the polynomials of A of degree strictly 
less than d in θ. We consider, for d ≥ 1, the element

ψs,d :=
∑

a∈A(d)

a(t1) · · · a(ts)
z − a

∈ F s ⊗Fq
K(z).

By Proposition 8 properties (1) and (2),

Ns,d := ldEdψs,d

is the unique polynomial of K[z, ts] of degree < qd in z such that the associated map 
C∞ → C∞[ts] which sends z to the polynomial Ns,d(z) interpolates the map

A(d) 
 a �→ a(t1) · · · a(ts) ∈ Fq[ts].

In [14], the second author found several explicit formulas for the sums ψs = ψs,∞ =
limd→∞ ψs,d for small values of s and in [12] the two authors of the present paper 
improved qualitatively the previous results without any restriction on s. In particular, 
the following formula holds, with t = t1, valid for d ≥ 1:

N1,d =
d−1∑
j=0

Ej(z)bj(t) ∈ K[z, t]. (5)

We also set Ms,d =
∏s

i=1(N1,d)t=ti and notice that, since degz(N1,d) = qd−1 by (1) of 
Proposition 8, the degree in z of Ms,d is equal to sqd−1. We can thus write, for d ≥ 1:
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Ms,d =
∑

i≤d−1

Ei1(z) · · ·Eis(z)bi1(t1) · · · bis(ts)

=
∑

i≤d−1

∑
0≤j≤sqd−1

εi,jGj(z)bi1(t1) · · · bis(ts)

where, we expand

Ei1 · · ·Eis =
∑
j

εi,jGj , (6)

with εi,j ∈ K, and where, i ≤ n stands for the inequalities ij ≤ n for j = 1, . . . , s (and 
similarly for i ≥ n).

Since both Ms,d and Ns,d have the same interpolation property (they interpolate 
the map a �→ a(t1) · · · a(ts) over A(d)), the polynomial Ms,d − Ns,d vanishes for all 
z = a ∈ A(d). This means that Ed divides Ms,d −Ns,d. But degz(Ns,d) < qd = degz Ed

from which we deduce that, for d ≥ 1,

Ms,d −Ns,d =
∑

i≤d−1

∑
qd≤j≤sqd−1

εi,jGj(z)bi1(t1) · · · bis(ts),

and, in particular,

Ns,d =
∑

i≤d−1

∑
0≤j≤qd−1

εi,jGj(z)bi1(t1) · · · bis(ts).

Now we notice that, for s ≥ 2, we have that (Ms,d/Ed)z=0 = 0. On one hand, we have 
(recall that s ≡ 1 (mod q − 1)):(

Ms,d −Ns,d

ldEd

)
z=0

= −ψs,d(0) = −
∑

a∈A(d)

a(t1) · · · a(ts)
−a

= −Fd(1; s).

On the other hand we note that, for all j > 0, if 
q(j) �= 1, then (Gj/ldEd)z=0 = 0, and 
if 
q(j) = 1, then, for some k ≥ 0, j = qk and Gj = Ek. Further, we have

(
Ek

ldEd

)
z=0

= Dd

ldDk

∏
0�=a∈A(k) a∏
0�=a∈A(d) a

= 1
lk
,

by [7, §3.2] or by (2) of Proposition 8. Thus, we obtain

−Fd(1; s) =
∑

d≤k≤d−1+	logq(s)

l−1
k

∑
i≤d−1

εi,qkbi1(t1) · · · bis(ts)

=
∑

i≤d−1

bi1(t1) · · · bis(ts)
∑

d≤k≤d−1+	log (s)

l−1
k εi,qk .
q
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By [2, Proposition 10] we see that, for all i = 1, . . . , s and all d ≥ m, if r = 0, . . . , d −
m − 1, then Fd(1; s)|ti=θqr = 0 (if d = m there is nothing to prove). Since the family 
of polynomials (bi1(t1) · · · bis(ts))i≥0 is a basis of the K-vector space K[ts], this means 
that, for all d ≥ m,

−Fd(1; s) =
∑

d−m≤i≤d−1

bi1(t1) · · · bis(ts)
∑

d≤k≤d+	logq(s)
−1

l−1
k εi,qk .

We can rewrite this identity as follows, for all d ≥ m:

−Fd(1; s) =
	logq(s)
−1∑

h=0

1
ld+h

×
∑

0≤j1,...,js≤m

ε(d−m+j1,...,d−m+js),qd+hbd−m+j1(t1) · · · bd−m+js(ts), (7)

and this puts us in the hypotheses of Lemma 9, with n = d −m, r = s and j = (j1, . . . , js). 
Thus, we see from (6) and the aforementioned lemma that

ε(d−m+j1,...,d−m+js),qd+h = cj,qh+m |Y =θqd−m .

Finally, for each h and j, as above, we have

ld−1∏s
i=1 bd−m(ti)

∏s
i=1 bd−m+ji(ti)

ld+h
=

∏s
i=1(ti − Y )(ti − Y q) · · · (ti − Y qji−1)

(θ − Y qm)(θ − Y qm+1) · · · (θ − Y qm+h)

∣∣∣∣∣
Y =θqd−m

.

Thus, letting wj,s :=
∏s

i=1(ti−Y )(ti−Y q)···(ti−Y qji−1
)

(θ−Y qm )(θ−Y qm+1 )···(θ−Y qm+h )
, we obtain

ld−1∏s
i=1 bd−m(ti)

Fd(1; s) = −
	logq(s)
−1∑

h=0

∑
0≤j1,...,js≤m

(cj,qh+mwj,s)|Y =θqd−m , (8)

completing the proof of the first part of Theorem 2, namely, that Hs exists, and is a 
rational fraction of K(Y )[ts].

2.1.3. Conclusion of the proof of Theorem 2

Proposition 10. Assume that s ≥ q and s ≡ 1 (mod q−1). Then, for all d ≥ m, we have 
that

Hs(θq
d−m

) = Hs,d,

where Hs,d is a non-zero polynomial of A[ts] of degree m − 1 = s−q
q−1 in ti for all i =

1, . . . , s.
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Proof. We note that ld−1Fd(1; s) ∈ A[ts] and that, for d ≥ m, the polynomial ld−1Fd(1; s)
is divisible by bd−m(t1) · · · bd−m(ts) in virtue of [2, Proposition 10].

One easily calculates, for each 1 ≤ i ≤ s, that the degree in ti of Fd(1; s) equals d − 1, 
and the degree of bd−m(ti) in ti equals d −m. Since Fd(1; s)/Πs,d ∈ A[ts], the degree in 
ti of this ratio is d − 1 − (d −m) = m − 1. �
Remark 11. The degree of Hs,d in θ can be easily computed, for all d ≥ m, from the 
arguments in the proof of [2, Proposition 11]. We obtain for this degree

δs,d := qd − q

q − 1 − s
qd−m − 1
q − 1 = m− 1 + μqd−m

in θ, where μ = qm−1
q−1 −m. To verify the displayed formula for δs,d, write s = m(q−1) +1

and observe that m ≥ 1 because s ≥ q.

Integrality of Hs. We need to show now that Hs is a polynomial in Y . We need an 
elementary fact.

Lemma 12. Let U = U(Y ) be a polynomial of A[ts][Y ] and M ≥ 0 and integer such that, 
for all d big enough,

U(θqd)
θqd+M − θ

∈ A[ts].

Then, U = (Y qM − θ)V with V ∈ A[Y ][ts].

Proof. If U has degree < qM in Y , then, for all d big enough, degθ(U(θqd)) ≤ C +
qd(qM − 1) with C a constant depending on U. Therefore, as d tends to infinity,

degθ

(
U(θqd)

θqd+M − θ

)
≤ C + qd(qM − 1) − qd+M → −∞,

which implies that U(θqd) = 0 for all d big enough, and U = 0 identically because the 
set {θqd ; d ≥ d0} ⊂ C∞ is Zariski-dense for all d0. This proves the Lemma in this case.

Now, if U has degree in Y which is ≥ qM , we can write, by euclidean division (the 
polynomial Y qM − θ is monic in Y ), U = (Y qM − θ)V + W with V, W ∈ A[Y ][ts] and 
degY (W) < qM . Hence, by the first part of the proof, W = 0. �

First we show that Hs ∈ A[ts][Y ]. Indeed, by (8), we can write

Hs(Y ) = U(Y )
qm qm+κ0

,

(θ − Y ) · · · (θ − Y )
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where κ0 = �logq(s)� −1 and U is a polynomial in A[Y ][ts]. By Proposition 10, Hs(θq
j ) ∈

A[ts], for all j ≥ 0, and we deduce that U(θqj )
(θ−θqj+k )

∈ A[ts], for each m ≤ k ≤ m + κ0 and 

all j ≥ 0. By Lemma 12, we conclude that U(Y )
(θ−Y qk )

∈ A[ts, Y ], for each m ≤ k ≤ m +κ0. 

Since the polynomials θ−Y qm , θ−Y qm+1
, . . . , θ−Y qm+κ0 are relatively prime, it follows 

that Hs ∈ A[Y ][ts], as claimed.
We end the proof of Theorem 2 by verifying the quantitative data using Proposition 10. 

We set ν = m −1 (note that μ = 0 in case s = q), so that degti(Hs,d) = ν, for all d ≥ m. 
Writing Hs =

∑
i ci(Y )ti with ci(Y ) ∈ A[Y ] and Hs,d =

∑
i c

′
i,dt

i with c′i,d ∈ A (3), we 
have

ci(θq
d−m

) = c′i,d,

for all d ≥ m and for all i. This means that degti(Hs) = degti(Hs,d) = ν for all d ≥ m

and i = 1, . . . , s. This confirms the data on the degree in ti for all i. Now that we know 
Hs ∈ A[ts, Y ], to complete the proof of the theorem we only need to verify that the 
degree of Hs in Y is equal to q

m−1
q−1 −m.

The degree in Y of Hs. We choose a root (−θ)
1

q−1 of −θ and we set:

π̃d := θ(−θ)
1

q−1

d−1∏
i=1

(
1 − θ

θqi

)−1

∈ (−θ)
1

q−1K×,

ωd(t) := (−θ)
1

q−1

d−1∏
i=0

(
1 − t

θqi

)−1

∈ (−θ)
1

q−1K(t)×.

Then, in Ts,

lim
d→∞

π̃d

ωd−m(t1) · · ·ωd−m(ts)
= π̃

ω(t1) · · ·ω(ts)
.

We note that degθ(π̃d) = q
q−1 and degθ(ωd(t)) = 1

q−1 .
We recall that we have set δs,d = qd−q

q−1 − s qd−m−1
q−1 and that we have defined μ so that 

the identity δs,d = m − 1 + μqd−m holds.

Lemma 13. We have, in K[ts], that:

π̃d

ωd−m(t1) · · ·ωd−m(ts)
= −(−θ)δs,d−m+1 bd−m(t1) · · · bd−m(ts)

ld−1
, d ≥ m.

3 We are adopting multi-index notations, so that, if i = (i1, . . . , is) ∈ Ns, then ti = ti11 · · · tiss .
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Proof. We note that

π̃d = θ(−θ)
1

q−1

d−1∏
i=1

−θq
i

θ − θqi

= −((−θ)(−θ)
qd−q
q−1 (−θ)

1
q−1 )l−1

d−1

= −(−θ)
qd

q−1 l−1
d−1,

and that

ωd(t) = (−θ)
1

q−1

d−1∏
i=0

(
−θq

i

t− θqi

)

= (−θ)
1

q−1 (−θ)
qd−1
q−1 bd(t)−1

= (−θ)
qd

q−1 bd(t)−1,

so that

π̃d

ωd−m(t1) · · ·ωd−m(ts)
= −(−θ)

qd

q−1 l−1
d−1(−θ)−

sqd−m

q−1 bd−m(t1) · · · bd−m(ts)

= −(−θ)
qd

q−1−
sqd−m

q−1
bd−m(t1) · · · bd−m(ts)

ld−1

= −(−θ)δs,d−m+1 bd−m(t1) · · · bd−m(ts)
ld−1

,

because qd

q−1 − sqd−1

q−1 = δs,d + q
q−1 − s

q−1 = δs,d + q−s
q−1 = δs,d −m + 1. �

The following lemma concludes the proof of Theorem 2 and supplies the degree in Y
of Hs.

Lemma 14. We have, in Ts:

lim
d→∞

θ−qd−mμHs(θq
d−m

) = −λ1,s.

Hence, the degree in Y of Hs equals μ := qm−1
q−1 −m.

Proof. By Theorem 1, λ1,s ∈ A[ts], which is known to be a polynomial of degree m −1 =
s−q
q−1 in θ, and by Lemma 13:

λ1,s = ω(t1) · · ·ω(ts) lim Fd(1; s)

π̃ d→∞
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= lim
d→∞

ωd−m(t1) · · ·ωd−m(ts)
π̃d

bd−m(t1) · · · bd−m(ts)
ld−1

Hs(θq
d−m

)

= − lim
d→∞

(−θ)m−1−δs,dHs(θq
d−m

)

= − lim
d→∞

θ−qd−mμHs(θq
d−m

)

Since we have shown that Hs is a polynomial in Y , the claim on the degrees is now 
clear. �
Remark 15. From the above, Corollary 4 follows at once.

2.2. Proof of Theorem 3

We first need to give the complete definition of the embedding ι in the statement of 
Theorem 3. The ring As of the introduction is easily seen to be an F s-algebra (use the 
diagonal embedding of F s in As). The map x �→ xq induces an F s-linear automorphism 
of F s[θ]/PF s[θ], hence, component-wise, an F s-linear automorphism of As that we 
denote again by τ . There is a natural injective ring homomorphism

K ⊗Fq
F s

ι−→ As

uniquely defined by sending r ∈ K to the sequence of its reductions mod P , well defined 
for almost all primes P (that is, irreducible monic). Now, ι extends to K1/p∞ ⊗Fq

F s in 
a unique way by setting, for r ∈ K1/p∞ ⊗Fq

F s,

ι(r) = τ−w(ι(τw(r))), w � 0.

Let P be an irreducible polynomial of A+. We observe that, for d = degθ(P ), ld−1 =
(θ−θq) · · · (θ−θq

d−1) ≡ P (t)
t−θ

∣∣∣
t=θ

≡ P ′(θ) (mod P ). Also, bd(t) = (t −θ) · · · (t −θq
d−1) ≡

P (t) (mod P ). Therefore:

Πs,d ≡ P (t1) · · ·P (ts)
P ′(θ)

∏s
i=1

∏m
j=1(ti − θqd−j )

≡ P (t1) · · ·P (ts)
P ′(θ)

∏s
i=1

∏m
j=1(ti − θq−j )

(mod P ).

Also, we have that Hs(θq
d−m) ≡ Hs(θq

−m) (mod P ).
We set

μ1,s := − Hs(θq
−m)∏s

i=1
∏m

j=1(ti − θq−j )
∈ K1/p∞ ⊗Fq

F s,

and Theorem 2 gives ZA(1; s) = Π̂1,sι(μ1,s).
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We tackle the non-vanishing of ι(μ1,s). Let d ≥ 0 be an integer, define the 

polynomial Ψd(X) := Xqd−X
Xq−X , of degree qd − q. Then, modulo Ψd(X), the powers 

1, X, X2, . . . , Xqd−q−1 ∈ Fq[X] are linearly independent over Fq. We set now, for m ≥ 1
and for d big enough, w := μqd−m +m − 1, and we observe that, again for d big enough, 
0 ≤ w < qd−q. Hence, the images of 1, θ, . . . , θw in the ring Fq[ts, θ]/(Ψd) are Fq-linearly 
independent (where Ψd = Ψd(θ)) and a polynomial H ∈ Fq[ts, θ] of degree ≤ w in θ is 
zero modulo Ψd if and only if it is identically zero. Now, one easily shows using the degree 
in Y of Hs that for all d sufficiently large, −Hs,d = −Hs(θq

d−m) is a monic polynomial 
in θ of degree w. In particular, the image of −Hs,d in Fq[ts, θ]/(Ψd) is non-zero.

We now end the proof of the non-vanishing of μ1,s, equivalent to the non-vanishing 
of ι(μ1,s), via a proof by contradiction. Let us suppose that for all d big enough, and 
for any P irreducible monic polynomial of A of degree d, we have Hs,d ≡ 0 (mod P ). In 
particular, this occurs for all large enough prime numbers d = �. Now,

Ψ� =
∏

P ;degθ(P )=�

P,

and the reduction of Hs,� modulo Ψ� is zero, giving the contradiction. Observe also 
that ι(μ1,s) ∈ A×

s .

2.2.1. Irrationality properties
We proceed to show the irrationality property of Theorem 3 to complete its proof. 

We study a few additional properties of the elements of A1

π̂ =
(
− 1
P ′

)
P

, ω̂(t) =
(

1
P (t)

)
P

that we present here as some kind of finite analogues of the elements π̃/(−θ)
1

q−1 and 
ω(t)/(−θ)

1
q−1 . In this way the ratio π̂ω̂ can be viewed as a close analogue of the ratio π̃

ω(t) .
The transcendence over K of π̃ and the transcendence of ω over K(t) can be proved 

in a variety of ways (see for example the techniques of Papanikolas’ [10]). From this, 
we immediately deduce that π̃ and ω are algebraically independent over the field K(t). 
We presently do not know if π̂ and ω̂ are algebraically independent over K1/p∞ ⊗Fq

F 1. 
Nevertheless, we can prove that π̂ is irrational (in other words, in A0, π̂ /∈ ι(K); see the 
case s = 0 in Theorem 17 below).

To continue, we invoke the following result of Hayes [8], strengthening Artin’s analogue 
of the Prime Number Theorem for the field K.

Fix d ≥ 1. For 1 ≤ k ≤ d, choose (α1, . . . , αk) ∈ Fk
q and relatively prime polynomials 

f, g ∈ A. Denote by �(d) the cardinality of the set of primes P ∈ A of degree d ≥ k such 
that P ≡ g (mod f) and

degθ(P − θd − α1θ
d−1 − · · · − αkθ

d−k) < d− k.
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Theorem 16 (Hayes). We have, for fixed k and for all d large,

�(d) = qd−k

dΦ(f) + O

(
qϑd

d

)
,

with 0 ≤ ϑ < 1, and where Φ is the function field analogue of Euler’s ϕ-function relative 
to the ring A. (4)

The term O
(

qϑd

d

)
can be made more explicit, but we only use in our proof that �(d)

tends to infinity as d tends to infinity. We apply Theorem 16 to prove the next:

Theorem 17. For all s ≥ 0, Π̂1,s = π̂
ω̂(t1)···ω̂(ts) ∈ As is irrational, that is, does not belong 

to ι(K) ⊗Fq
F s.

In particular, π̂ /∈ ι(K) ⊂ A0.

Proof. We deduce from Theorem 16 that for all n ≥ 1 fixed, there exist infinitely many 
δ > n and infinitely many irreducible elements P ∈ A+ of the form

P = θpδ + θp(δ−n)+1 + · · · (9)

(recall that p is the characteristic of Fq). We denote by Pn the (infinite) set of primes P
of the form (9).

Let us suppose, by contradiction, that the statement of the Theorem is false. Then, 
we can find relatively prime polynomials a, b ∈ A[ts] and, for all n ≥ 1 and for all but 
finitely many P ∈ Pn, a polynomial QP ∈ A[ts], such that

bP (t1) · · ·P (ts) − aP ′(θ) = QPP. (10)

We can already exclude the case ab = 0 which immediately yields a contradiction. Setting 
α = degθ(a) ≥ 0 and β = degθ(b) ≥ 0 and considering P ∈ Pn, we can transcribe the 
above identities (10) in the inequality

degθ(QP ) ≤ max{β − δp, α + (δ − n)p− δp} = max{β − δp, α− np}.

Choosing n ≥ 1 such that np > α, we see that QP = 0 for all but finitely many P ∈ Pn. 
Hence, bP (t1) · · ·P (ts) = aP ′(θ) for all but finitely many P ∈ Pn which implies a = b = 0
and a contradiction. �
4 For the definition and the basic properties of Φ, see Rosen, [15, Chapter 1].
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2.2.2. End of proof of Theorem 3
We are now in condition to finish the proof of Theorem 3. We have seen that ZA(1; s) =

Π̂1,sι(μ1,s) and that ι(μ1,s) �= 0. Moreover, Π̂1,s is irrational by Theorem 17 and we are 
done. �

It seems more difficult to deduce the following conjecture from Hayes’ Theorem 16:

Conjecture 18. π̂ is transcendental over K.

2.3. Proof of Theorem 5

We recall that we have set:

Γd =

∏
i≥d

(
1 − θ

θqi

)
∏

i≥d−m

∏s
j=1

(
1 − tj

θqi

) ∈ Ts(K∞).

We need the following result where we suppose that s = 1 + m(q − 1) with m > 0.

Lemma 19. For any integer r with 0 ≤ r ≤ μ there exists a polynomial

Γs,r ∈ A[ts, θ][Y ],

monic of degree μ − r in Y , such that, for all d ≥ m,

θ(μ−r)qd−m

Γd = Γs,r(θq
d−m

) + wd, (11)

where (wd)d≥m is a sequence of elements of Ts(K∞) which tends to zero for the Gauss 
norm as d tends to infinity.

Proof. Let f(Y ) = 1 +
∑

i≥1 fiY
−i be an element of Fq[ts][[Y −1]]× and g(Y ) = 1 +∑

i≥1 giY
−i an element of A[[Y −1]]. Then, for all k ≥ 0, we can decompose in a unique 

way:

Y kg(Y )f(Y )−1 = H0(Y ) + H1(Y ), (12)

where H0(Y ) ∈ A[ts][Y ] has degree k in Y and H1(Y ) ∈ 1
Y A[ts][[ 1

Y ]]. We suppose that g
converges for Y = y ∈ Ts with ‖y‖ > 1 where we recall that ‖ · ‖ denotes the Gauss norm 
of the Tate algebra Ts (hence, the convergence takes place in a subset of Ts). Of course 
f and f−1 also converge at such elements y. If now (yd)d is a sequence of elements of Ts

with ‖yd‖ > 1 and such that ‖yd‖ → ∞ as d → ∞, then, ‖H1(yd)‖ → 0.



F. Pellarin, R. Perkins / Journal of Number Theory 232 (2022) 355–378 375
We set, for all d ≥ 0, yd = θq
d . We also set:

f(Y ) :=
∏
i≥0

s∏
j=1

(
1 − tj

Y qi

)
=

s∏
j=1

∑′

nj≥0
(−tj)	q(nj)Y −nj ∈ Fq[ts][[Y −1]]×,

g(Y ) :=
∏
i≥0

(
1 − θ

Y qi+m

)
=

∑′

n≥0
(−θ)	q(n)Y −qmn ∈ A[[Y −1]],

where the sum is restricted to the integers n which have, in their expansion in base q, 
only 0, 1 as digits. Then, g converges for any choice Y = y ∈ Ts with ‖y‖ > 1. Writing 
h(Y ) = g(Y )f(Y )−1 ∈ A[ts][[Y ]], we have

h(yd−m) = Γd, ∀d ≥ m,

hence yμ−r
d−mΓd = H0(yd−m) + H1(yd−m)︸ ︷︷ ︸

wd→0

. The identity (11) of the lemma now follows 

by using (12) with k = μ − r and the polynomial Γs,r is easily seen to be monic of the 
claimed degree. �
Remark 20. For example, a simple computation shows that Γs,1 = Y + t1 + · · · + ts if 
m > 0.

We can prove Theorem 5. We suppose that d ≥ m and that m ≥ 1. We recall from 
Lemma 13 that

1
Πs,d

= −(−θ)δs,d−m+1ωd−m(t1) · · ·ωd−m(ts)
π̃d

= −(−θ)m−1+μqd−m−m+1ωd−m(t1) · · ·ωd−m(ts)
π̃d

= −θμq
d−m ωd−m(t1) · · ·ωd−m(ts)

π̃d
.

After explicit expansion of (1), we write

Π−1
s,dFd(1; s) −

μ∑
i=r+1

Diθ
iqd−m

= Drθ
rqd−m

+
r−1∑
j=0

Djθ
jqd−m

.

Dividing both sides by θrq
d−m we deduce that

Dr = −θ(μ−r)qd−m ωd−m(t1) · · ·ωd−m(ts)
π̃d

Fd(1; s) −
μ−r∑
i=1

Di+rθ
iqd−m

+ ud,

with ud a sequence of elements of Ts(K∞) tending to zero. We can rewrite this as
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Dr = −θ(μ−r)qd−m ω(t1) · · ·ω(ts)
π̃

ΓdFd(1; s) −
μ−r∑
i=1

Di+rθ
iqd−m

+ ud,

= −Γs,r(θq
d−m

)ω(t1) · · ·ω(ts)
π̃

Fd(1; s) −
μ−r∑
i=1

Di+rθ
iqd−m

+ vd,

for another sequence of elements vd of Ts(K∞) tending to zero as d → ∞, by using (11)
of Lemma 19. The theorem follows. �
Remark 21. Note that in contrast, in the classical setting of tail series of Riemann’s zeta 
values, we have a much more transparent, almost trivial situation. Indeed, with ψ(m)(z)
the function dm

dzm

Γ′(z)
Γ(z) (Γ being Euler’s function), one sees easily the formula

ψ(m)(n)
(−1)m+1m! =

∑
k≥n

1
km+1 , m ≥ 1.

Now, since limn→∞ ψ(m)(n)nm = (m −1)! with this range of m, we reach the well known 
trivial limit

lim
n→∞

nm−1
∑
k≥n

1
km

= 1
m− 1 , m ≥ 2.

But in our function field case, additional complexity is introduced by the presence of the 
variables ti, and it looks hard to give an arithmetic significance to the coefficients Dr

but the leading coefficient of Hs.

2.4. Proof of Theorem 7

For a ∈ A+(i) with i ≥ 0 and for j an index between 1 and s′, we can write a(tj) =
tij+b(tj) where b ∈ Fq[t] is a polynomial with degree in t strictly smaller than i (depending 
on a). Hence, we can write, with Gs,d a polynomial of K[ts] such that for all j = 1, . . . , s′, 
degtj (Gs,d) < d − 1:

Fs,d =
d−1∑
i=0

∑
a∈A+(i)

a(t1) · · · a(ts)
a

=
∑

a∈A+(d−1)

a(t1) · · · a(ts′)td−1
s′+1 · · · td−1

s

a
+ Gs,d

= td−1
s′+1 · · · td−1

s Sd−1(1; s′) + Gs,d.

In particular, Sd−1(1, s′) ∈ K[ts′ ] is the coefficient of td−1
s′+1 · · · td−1

s of the polynomial 
Fs,d ∈ K[ts]. Now, by Theorem 2 we see that Sd−1(1, s′) is the coefficient of td−1

s′+1 · · · td−1
s
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in the polynomial Πs,dHs|Y =θqd−m (for all d ≥ m, with s = m(q − 1) + 1). Since the 
coefficient of td−m

s′+1 · · · td−m
s in bd−m(t1) · · · bd−m(ts) is equal to bd−m(t1) · · · bd−m(ts′), we 

deduce that Sd−1(1, s′) is equal to Πs′,s,d = Πs,d/ 
∏s

i=s′+1 bd−m(ti) times the coefficient 
of tm−1

s′+1 · · · tm−1
s of Hs|Y =θqd−m which is Hs,s′ |Y =θqd−m . �

3. Examples

We give some formulas without proof. If s = q, then m = 1, and it can be proved that 
Hq = −1 and λ1,s = 1. If s = 2q − 1, we have that m = 2, μ = q − 1 and the following 
formula holds, when q > 2:

H2q−1 =
2q−1∏
i=1

(ti − Y ) + (Y q − θ)eq−1(t1 − Y, . . . , ts − Y ) ∈ A[ts], (13)

where the polynomials ei are the elementary symmetric polynomials that, in the variables 
T1, . . . , Ts, is defined by:

s∏
i=1

(X − Ti) = Xs +
s∑

j=1
(−1)jXs−jej(T1, . . . , Ts).

Developing (13) we obtain, again in the case q > 2:

H2q−1 =
q−1∑
i=0

(−1)i(e2q−1−i − θeq−1−i)Y i

with ej = ej(ts), from which it is easy to see that H2q−1 has the following partial degrees: 
degti(H2q−1) = 1 for all i, degθ(H2q−1) = 1 and degY (H2q−1) = μ = q − 1 in agreement 
with the Theorem 2. Furthermore, the coefficient of Y μ is equal to −B2q−1 = −λ1,2q−1 =
−θ + eq(t1, . . . , t2q−1) (see the examples in [4]).

Also, computing the coefficient of the appropriate monomial in td−1
1 , . . . , td−1

s as in 
§2.4 from the formula (13), it is easy to deduce the formulas

Sd−1(1; s) = bd−1(t1) · · · bd−1(ts)
ld−1

for d ≥ 1 and s = 0, . . . , q − 1. Further, we compute easily, for d ≥ 2:

Sd−1(1, q) = bd−2(t1) · · · bd−2(tq)
ld−1

(
q∏

i=1
(ti − θq

d−2
) + θq

d−1 − θ

)
,

which agrees with [13, Corollary 4.1.8]. The analysis of the case q = 2 is similar but we 
will not describe it here. For s = 3q − 2 we have m = 3 and μ = q2 + q − 2. We refrain 
from displaying here the explicit formulas we obtain.
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