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ON TWISTED A-HARMONIC SUMS AND CARLITZ FINITE ZETA VALUES

F. PELLARIN & R. PERKINS

ABSTRACT. In this paper, we study various twisted A-harmonic sums, named following the semi-
nal log-algebraicity papers of G. Anderson. These objects are partial sums of new types of special
zeta values introduced by the first author and linked to certain rank one Drinfeld modules over
Tate algebras in positive characteristic by Angles, Tavares Ribeiro and the first author. We prove,
by using techniques introduced by the second author, that various infinite families of such sums
may be interpolated by polynomials, and we deduce, among several other results, properties of
analogues of finite zeta values but inside the framework of the Carlitz module. In the theory
of finite multi-zeta values in characteristic zero, finite zeta values are all zero. In the Carlitzian
setting, there exist non-vanishing finite zeta values, and we study some of their properties in the
present paper.

1. INTRODUCTION

Let A =T,[6] be the ring of polynomials in an indeterminate 6 with coefficients in F, the finite
field with ¢ elements and characteristic p, and let K be the fraction field of A. We consider variables
t1,...,ts over K and we write ¢, for the family of variables (¢1,...,ts). We denote by F's the field
F,(t,), so that Fg =F,. For d > 0 an integer, we denote by A1 (d) the set of monic polynomials of
A of degree d. We define the twisted power sum of level s, degree d, and exponent n

Sa(n;s) = Z MGKES]’

an
a€A+(d)

where, for a polynomial a = 3", ;0" € A with a; € F, and a variable ¢, a(t) denotes the polynomial
> aitt. If s = 0 we recover the power sums already studied by several authors; see Thakur’s [23]
and the references therein. For general s these sums have been the object of study, for example, in
the papers [3, 9]. We recall that, in [1, (3.7.4)], Anderson and Thakur proved, for all n > 1, that
there exists a unique polynomial H,, € A[Y] (with Y an indeterminate) of degree in Y which is at
most %, such that, for all d > 0,

H,(69")

T
where II,, is the n-th Carlitz factorial (see Goss’ [10, Chapter 9]) and l4 denotes (—1)¢ times
the least common multiple of all polynomials of degree d; explicitly, I4 is given by the product

0—07---(0— qu) € A, for d > 1, and [y := 1. These investigations have been generalized by F.
Demeslay in his Ph. D. thesis [9] to the sums S;(n; s) for any value of s > 0.

Sa(n;0) =
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In this text, we deal with a similar analysis, but for twisted A-harmonic sums as above, which
are the sums:

d—1
Fy(n;s) = ZS’i(n; s) € K[t,], neZ,seN,deN\{0}.
i=0

We are mainly interested in the case n = 1 and s =1 (mod ¢—1). We denote by b;(Y’) the product
(Y —6)---(Y —69 ") € A]Y] (for an indeterminate V) if i > 0 and we set bo(Y) = 1. We also

write m = LZ:H (the brackets denote the integer part so that m is the biggest integer < ;j) M.
We set

bdfm(tl) e bdfm(ts)
la—1
The main purpose of the present paper is to show the following result.

Hs,d =

€ Kt,], d>max{1l,m}.

Theorem 1. For all integers s > 1, such that s =1 (mod g — 1), there exists a non-zero rational
fraction Hs € K(Y,t,) such that, for all d > m, the following identity holds:
Fd(l; S) = H57dHS|Y:9qd77n .
If s =1, we have the explicit formula
1

ot =0
Further, if s =1+ m(q — 1) for an integer m > 0, then the fraction H, is a polynomial of A[Y,t,]
with the following properties:

(1) For all i, deg, (H,) =m —1,

m_1

(2) degy (Hj) = qq_l —m.
The polynomial Hy is uniquely determined by these properties.

I,

We have found it somewhat subtle to compute the degree in 8 of H, and we leave it as an open
question.

Limits and Carlitz zeta values in Tate algebras. We shall now explain the motivations of

this work. We write C, for the completion @ of an algebraic closure K of the completion Ko,
of K at the infinite place %. One of the reasons for which we are interested in such properties of

the sums Fy(n;s) is that they are the partial sums of the zeta-values

Ca(nss) = lim Fi(n;s) = Z w
acAt

, n>0, s>0,

with AT the set of monic polynomials of A, converging in the Tate algebra
T, = CooBr,Fylt,]

in the variables ¢, and with coefficients in Co, (with the trivial valuation over F,[t,]), introduced
in [15] and studied, for example, in [3, 4, 5]. We choose once and for all a ¢ — 1-th root of —0 in

Coo. Let
. £\
0=t (1- )
i>0

We should have written ms instead of m, to stress the dependence on s. However, eventually we will fix s = 1
(mod g — 1), so we prefer to drop this subscript.
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be the Anderson-Thakur function, in T = T the Tate algebra in the variable ¢ = ¢; with coefficients
in C (see [1] for one of the first papers in which this function was studied and [4] for a more recent
treatise of its basic properties). Let us also consider the fundamental period @ € Co of the F,[t]-
linear Carlitz exponential expe : T — T (so that w(t) = expo (525 ), as in [4]). We have the following
result (see [3], see also [5]), which gives one motivation for calling the special values (4(n;s) zeta
values.

Theorem 2 (B. Angles and the first author). For s = 1 (mod ¢ — 1) and s > 1, there exists a
polynomial Ay s € A[t,] such that

/7:‘:)\1 s
ls) = —2Ls
A=) i)
We also recall from [15] the formula
G
(1) = [(EPOh

Theorem 1 can be seen as a “finite sum analogue” of Theorem 2. It is easy to see, by taking the
limit n — oo in the Tate algebra T, that Theorem 1 implies Theorem 2. But Theorem 1 contains
more information; the process of convergence at the infinite place which takes us to Theorem 2 from
Theorem 1 suppresses various information encoded in the formula of Theorem 1. We know from [3]
and [5] that A1 s is a polynomial in A[t,] when s > g and s =1 (mod ¢ —1). For any such a choice
of s=1 (mod g—1), A\ s is a generator of the Fitting ideal of a certain class module considered in
[5], inspired by Taelman’s theory in [21]. We will prove:

Theorem 3. Fors > q and s =1 (mod g—1), —A15 is the leading coefficient of Hy as a polynomial
mY.

Analytic formulas of lower coefficients. We now discuss a similar analytic formula involving
the coefficients D; € Alt,] of the polynomial

H, = ijiYi € AlLY]

i=0
from Theorem 1. We recall that Hj satisfies, by Theorem 1,
Fq(l;8) la1Fa(1;s) m

— a?”
(1) Hs,d bd—m(tl) T bd—m(ts) HS(0 ),
for all d > m. Since u = 0 for s = g, we can restrict our attention to the case s > 2¢ — 1 in this
part.
We set, for all d > m (?),

Hizd (1 - ﬁ)
s t;
Hidem Hj:l (1 o ﬁ)

In Lemma 19 below, we will define a sequence of polynomials I . € A[t,][Y] monic of degree
pw—rin Y related to a series expansion of the product I'y. On the basis of this sequence of explicitly
computable polynomials (we refer the reader to the statement of this lemma), we have the following
result.

I'y:=

€ Ts(Kxo)-

2Hore7 Ts(Ko) denotes the subring of the Tate algebra Ts whose elements are formal series in t, with coefficients
in Koo.



4 F. PELLARIN & R. PERKINS

Theorem 4. For all r such that 0 <r < u— 1, we have:

) wl(t . g Cdem
D, = — lim <wrsm(9qd )Fd(l; S) + Z Di«i»Telqd ) .
d—o0 ™ izl
It is easy to deduce, from Theorem 4, an explicit identity for the coefficient ID,,_; which of course
makes sense only if s > 2¢ — 1. Indeed, it is easily seen that, with » = u — 1, Theorem 4 and the
simple identity I's ,—1 =Y + Y_;_, t; imply the next result.

Corollary 5. There exists a polynomial vy s € Alt,] such that

%Vl,s

lim 07" " Si(l;8) = ——————
d—o0 de ( ) w(tl) .. ~w(t5)

and

Du—l =UVi,s — (tl + -+ ts))\l,s'
We pose the following question.

Question 6. What is the arithmetic meaning of the lower coefficients D,., r < u? Are they related
in some way to Taelman’s class modules, just as the coefficient D, = —\1 5 as shown in [5]?

Application to twisted power sums. In his Ph. D. thesis [9], F. Demeslay recently proved that,
for all n > 1 and ¢’ > 0, there exists a unique rational fraction @, ¢ (t,,Y) € K(¢,,Y) such that,
for some fixed integer » > 0 and for all d,

"

(2) Sd(”? 5/) = l;nbd(tl) T bd(tS’)Qn.,s/ (Is’v 9qd7 )7

hence providing a complement to [1, (3.7.4)]. Demeslay in fact proves several other properties
related to the sums Sq(n; s’), and we refer the reader to his thesis ibid. for the details of his results.
Here we deduce, from Theorem 1, results similar to Demeslay’s, though we do not make any explicit
comparison with his results in this note.

We consider an integer s > ¢ such that s =1 (mod ¢ — 1). We set m = %, and we choose an
integer s’ such that 0 < s’ < s. We show that there exist universal formulas for the twisted power
sums Sy_1(1;s") (this was also obtained by Demeslay) together with a way to make them explicit
by using the polynomials H; (which is new compared to the previous literature). For this, we set
H, s to be the coeflicient of t:};ll ~--tm=1in H,. It is a polynomial of A[Y][t,]. It is easy to see
that the coefficient of ¢]*~!...¢™~1 in H is one. Hence, the coefficient of t]"~"..-¢"~! in H,  is
also equal to one.

Theorem 7. Let s =1+ m(q—1), withm > 1, and let 0 < s’ < s. For each d > m — 1, we have
that

Sd(l; S/) = l;l H bd+17m (ti)H&S/ |Y:0qd+177n .
i=1

This result also implies similar, but messier formulas for general twisted power sums Sy(n;s’)
but we do not mention them here.
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1.1. Finite zeta values. Theorem 1 also opens a way through a study of finite zeta and multi-zeta
values, which motivates the title of the paper.
We consider, following Zagier, the ring

the product and the direct sum running over the prime numbers p (*). Two elements (a,), and
(bp)p € Ag are equal if and only if a, = b, for all but finitely many p. The ring Ag is not a domain.
However, there is a natural injective ring homomorphism

Q— Ag

defined by sending r € Q to the class modulo @pp% of the sequence of its reductions mod p, well
defined for almost all p (that is, for all but finitely many p). Therefore, Ag is a Q-algebra. This
algebra is the main recipient for the theory of finite multiple zeta values, as in Kaneko’s [13]. For

example, for all £ > 0, the finite zeta value of exponent k trivially vanishes in Ag:

p—1

Calk) = (Z % (mod p)> =0¢ Ag.

n=1 p

More generally, the finite multiple zeta values are defined, for kq,..., k. € Z, by

CA(kl,...,kr):< Z ﬁ (modp)) € Ag.

0<n < <nE<p ny Ny »

As a matter of a fact, no one of these elements is currently known to be non-zero, and it is a basic
problem in the theory to establish such non-vanishing. We discuss these issues further in the final
section, §5.

1.2. Finite zeta values in the Carlitzian setting. We will apply Theorem 1 to show that
certain variants of finite zeta values, introduced just below, are non-zero.
As an analogue of the ring Ag, we consider the ring

Fs[0]
75
s = T[ﬂ’
Drrm

P

where the product and the direct sum run over the primes of A (that is, irreducible monic polyno-
mials of A). The indexation of the variables t1,...,ts; induce embeddings Ag — A; < -+ — A,
and in the following, we are viewing the rings As embedded one in the other as above. Let K 1/p=
be the subfield of an algebraic closure K of K whose elements z are such that 2" € K for some i

31t can be considered as a kind of residue ring of the rational adeles Ag. Indeed, there is a natural ring epimorphism
Ag — Ag sending an adéle (xp)p to the well defined residue (zp (mod p))p.
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(note that this is equal to the subfield of K¢ whose elements are the z such that 29" € K for some
i). There is a natural embedding

KYP" @p Fy 5 A
(see §3 of the present paper) (*). Let P be a prime of degree d in 6; we extend the P-adic valuation
vp of K to K ®p, F's by setting it to be the trivial valuation on F's. Then, vp(S;(n;s)) > 0 for all
0 < i < d so that vp(Fy(n;s)) > 0 for all n € Z and s € N. In particular, we have the finite zeta
value of level s and exponent n,

Za(n;s) = (Fdege(P) (n;s)  (mod P))P c A,.

The analysis of several examples of the zeta elements Z 4(n; s) leads us to formulate the following
vanishing Conjecture, in which n,s are integers such that n > 0 and s > 0, and where, if n =
no +n1q+ -+ n.q" is the base-q expansion of n, £4(n) := >, n;.

Conjecture 8. The following properties hold.
(1) If n # s (mod g — 1), then Za(n;s) # 0.
(2) If n=1s (mod q — 1), then Za(n;s) =0 if and only if £,(n) > s.

It is easy to deduce, in the case ¢ > 2, from [2, Lemma 3.5], that Z4(1;0) € Ao \ {0} agreeing
with (1) of the conjecture. In Lemma 21 below, we show that the case (1) of the conjecture holds
true if s > 0. In fact, the case n = 1 of the conjecture is completely settled including in the case
(2), more difficult, as we are going to see now. We consider the following elements,

%n

(-1 P x T x
w._( P’>P€AO’ w(t)._<P(t)>PeA1,and H”’S'_@(tl)---@(ts)eAs’

where we write ¢t = ¢; if s =1 and n, s are integers such that n = s (mod ¢ — 1) (if R is a unitary
ring, R* denotes the group of invertible elements of R). Here, the dash ’ denotes the derivative
with respect to € in K. It is easy to show that they are indeed units of the respective rings; further
basic properties of T and @ are given in §4.1; for example, we will prove in Theorem 22 that 7 is
“irrational”, i.e. it does not belong to ¢(K).

Our main application of Theorem 1 to finite zeta values is the following result.

Theorem 9. Assume that s = 1 (mod g — 1). Then, there exists a non-zero explicit element
Mi,s € K1/p™ @, F's such that

Za(l;s) = Ty gt(p).
In particular, Z4(1;s) € AZ.

We recall that the second author has shown [18] that, for n > 0 and s > 0, the sequence of
the partial sums of the series )., S4(—n;s) is ultimately equal to a polynomial BG(n;s) € Alt,]
called the Bernoulli-Goss polynomial of order n and level s. The next result settles the “if” part
of (2) of Conjecture 8. We recall that ¢,(n) denotes the sum of the digits of the base-q expansion
of the positive integer n.

Theorem 10. Let n and s be integers such that n > 1 and s > 0. Suppose that {4(n) > s. Then
Za(n;s) = (BG(gd2e(P) — 1 —n;s) (mod P))p. In particular, if s =n (mod q — 1), we have that
Za(n;s) =0.

We deduce that Z4(n;0) =0 for all n > 1, with n =0 (mod ¢ — 1).

“We prefer to keep our notations as simple as possible, and we avoid to denote the above embedding by ¢s.
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2. PROOFs

Basic notation.

|x]: largest rational integer n such that n < x, with = real number.

log,(): logarithm in base g of the real number x > 0.

Lg(n): sum of the digits of the expansion in base ¢ of the non-negative integer n.

m: the integer L;:}J for s > 1.

[n]: The polynomial #4" — @ € A with n > 0 integer. We also set [0] := 1.

I, the sequence of A defined by lp =1 and I,, = —[n]l,,—1 with n > 0.

e D,: the sequence of A defined by Dy =1 and D,, = [n]D}_,.

e by,: the polynomial (Y —6)--- (Y —07 ") e A[Y]if n >0 and by = 1, for n > 0.

o A(i): for i > 1 an integer, the F,-vector space of polynomials of A of degree < ¢ in §. We
also set A(0) = {0}.

o Fg: the field Fy(t,) =Fq4(te,. .., ts).

n—1

2.1. Proof of Theorem 1. We first consider the separate case of s = 1 and we set t = t;. It is
easy to see that in K[t], for all d > 1,

3 Fa(1;1 RS “1a(t) = 240
(3) a(1; )—Z Z a a(ﬂ—m7

=0 ac A+ (4)
see for instance [4]. This proves Theorem 1 with s =1, m =0 and Hy = 15 € K (¢).

In all the rest of this subsection, we suppose that s > ¢ is an integer such that s =1 (mod ¢—1),
and we let m = Zj. We proceed in several steps: in §2.1.1 we analyze the dependence on d of
the relations and the occurrence of the variable Y, in §2.1.2 we study the interpolation properties
of certain series and conclude the proof of the first part of Theorem 1, namely, that H, exists and
belongs to K(Y)[t,]. Finally, in §2.1.3, we conclude the proof of Theorem 1 by using a Zariski

density argument.

2.1.1. Euxistence of universal relations. We shall write, for a new indeterminate z
E;=Ei(2):=D;" ] (z—a) € K[2],
acA(i)

where A(7) denotes the F,-vector space of polynomials of A whose degree is strictly less than ¢ in
6. In Goss’ [10, Theorem 3.1.5], the following formula, due to Carlitz, is proved:

[ qu
Bi(z) =) ——, i>0.
j=0 Djlzqu

In particular, we deduce the following result that we will use later.
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Proposition 11. The following properties hold, for all i > 0.
(1) The polynomial E; is F,-linear of degree ¢' in z, and E;(6%) = 1.
(2) For all a € A(%) and all i > 0 we have

AN I oA
z—al,_, dz l;
(3) For alli >0, we have that E! = E; + [i + 1]Ej41. O

Next, if n is a non-negative integer and if n = ng+mn1¢+---+n,q" is its base-¢ expansion (with
the digits ng,...,n, € {0,...,q — 1}), we shall consider the polynomial
Gn=Ej°---El' € K[z],

so that Gy = 1. By Proposition 11, (1), deg,(G,) = n so that every polynomial @ € K[z] can be
written, in a unique way, as a finite sum

Q= chGn, cn, € K.
n>0

Lemma 12 (Universal Relations Lemma). Let j := (j1,...,Jr) be an r-tuple of non-negative
integers. There exist polynomials {c;j;}i>0 C A[Y], all but finitely many of which are non-zero,
such that for each non-negative integer n we have

EnijiEntgs - Bnije = ) ¢ ygun G0
i>0 -
Proof. We induct on the number of entries r of the tuple j = (ji,Jj2,...,Jr). After reindexing, we
may assume that 0 < j; < jo < --- < .
If no ¢ consecutive entries are equal, i.e. jy11 = jry2 = -+ = jrtq does not hold for any k, we
have

EntjiEntjs - Enyj, = Gon(gin+gi2 4 tgir)»
and we obtain a single non-zero polynomial ¢; s~ i (V) :=1.
So, assume that we have jy11 = jit2 = -+ = jrtq, for some 0 < k < r — ¢. Grouping these E;’s
together and applying (3) of Proposition 11 above, we obtain
EntiiEntgs - Entj, =Enji - Ent (Bntj) Bty gnr - Bntie
(4) —Ln+tg 'EnJrjk En+jk+1En+jk+q+l T EnJrjr
+ [n + jk+1 + 1]En+j1 T En+jkEn+jk+l+1En+jk+q+l e 'En+jr'
Now, both
€1 := En+j1 c En+jkEn+jk+lEn+jk+q+1 e EnJrjr and
e2:= Enyj - Engjy Bt 1Bt g Ensg, s
which occur in the previous displayed line, both come from tuples with r — (¢ — 1) many entries,
namely
‘il = (.jlv"'7jk+17jk+q+la-'-aj7“) and 12 = (jlv'-'ajkaijrl+1ajk+q+17"'aj7“)
and hence by induction we deduce the existence of polynomials {leyi(Y)}z‘zo and {Cj2,i(Y)}i20 in
A[Y], all but finitely many of which are non-zero, such that
e = Zcilﬂ:(eqn)qun and €9 = ch»z,i(Hq”)qun,

i>0 i>0
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for all n > 0.
Returning with this to (4), we obtain

o
EntjiBotjy - Enyje = ) (Cgl,i(y) + (YT 9)012,1'(1/)) ly=gam Gign-
i>0
So we let ¢; (V) i=c¢; (V) + (Y7 —0)c; i(Y). 0

2.1.2. Interpolation properties. Recall that A(d) denotes the F4-vector space of the polynomials of
A of degree strictly less than d in 8. We consider, for d > 1, the element

a(ty)---a(ts
Ve d 1= Z % e F; F, K(z).
acA(d)
By Proposition 11 properties (1) and (2),
Nsa :=1qgEqs q

is the unique polynomial of K[z, t,] of degree < ¢ in z such that the associated map Coo — Coo[t,]
which sends z to the polynomial N 4(z) interpolates the map

A(d) 3 awr altr) - alts) € Fylt,]-

In [19], the second author found several explicit formulas for the sums ¥ = ¥ 00 = limg—yo0 V5,4
for small values of s and in [16] the two authors of the present paper improved qualitatively the
previous results without any restriction on s. In particular, the following formula holds, with ¢ = ¢4,
valid for d > 1:

d—1
(5) Nia =Y Ej(2)b;(t) € K[z,1].
j=0

We also set My 4 = [;_, (N1,4)1=¢; and notice that, since deg,(N1,4) = ¢! by (1) of Proposition
11, the degree in z of Mj 4 is equal to sq?~1. We can thus write, for d > 1:

Mog = Y Ei(2)- Ei(2)bi (t1) -~ by, (ts)

i<d—1
= > > €iGi(2)bi, (tr) b (ts)
i<d—10<;j<sqd1

where, we expand

(6) BB, =Y €;Gj,

J
with ¢; ; € K, and where, ¢ < n stands for the inequalities i; < n for j = 1,...,s (and similarly for
i>mn).

Since both M; 4 and N 4 have the same interpolation property (they interpolate the map a —
a(t1)---a(ts) over A(d)), the polynomial M, 4 — N, 4 vanishes for all z = a € A(d). This means
that E,; divides M 4 — Ny 4. But deg,(Ns 4) < ¢¢ = deg, E4 from which we deduce that, for d > 1,

Mea=Nea= Y. > €;Gi(2)bi,(tr) - b, (ts),

i<d—1qd<j<sqd~1
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and, in particular,
Nea= Y Y €;Gi(2)bi,(tr) - bi,(ts).
i<d—10<j<q?—1
Now we notice that, for s > 2, we have that (M, 4/F4),=0 = 0. On one hand, we have (recall that
s=1 (mod ¢ —1)):

<M> = —p.4(0) = — Z M:—Fd(l;s).
z=0

laFa a€A(d)

On the other hand we note that, for all j > 0, if £,(j) # 1, then (G;/laEq) =0 = 0, and if £,(j) = 1,
then, for some k > 0, j = ¢* and G; = Ej. Further, we have

( By ) _ Dallogacama _ 1
laEi) .y Dk HO;zéaeA(d) a g
by [10, §3.2] or by (2) of Proposition 11. Thus, we obtain
—Fy(1;s) = > LD engebin(t) i ()

d<k<d—1+[log,(s)]  i<d—1

D bia(ta) i (k) > I g

i<d—1 d<k<d—1+|log,(s)]

)

By [3, Proposition 10] we see that, for all ¢ = 1,...,s and all d > m, if r = 0,...,d — m —
1, then Fy(1;s)|;,—a- = 0 (if d = m the property is void). Since the family of polynomials
(biy (t1) - - - by, (ts))i>0 is a basis of the K-vector space K[t ], this means that, for all d > m,

“Falis)= Y0 balt) b)Y e
d-m<i<d—1 d<k<d+|log,(s)]—1
We can rewrite this identity as follows, for all d > m:

[log,(s)]—1

1
(7) - Fd(l; 8) = Z l— Z E(dferjl ..... d7m+js),qd+hbd—m+j1 (tl) te bd—m-i—js (ts)a
h=0 o<y e<m
and this puts us in the situation of Lemma 12, with n = d —m, r = s and j = (j1,...,js). Thus,

we see from (6) and the aforementioned lemma that

€(d—m+j1,...,d—m+js),q¢th = Cj,ghtm |Y:0qd*m'

Finally, for each h and j, as above, we have

la— Hf:l bd—m+j, (ti) _ Hle(ti - Y)(ti — Yq) ce (ti — Yqjifl)

[T, ba—m(ts) latn @—Ya™)y( O -y ). (0 —Yam")

y—gad—m
. T U 01T S I T ) .
Thus, letting wjs = (G_qu)(e_quﬂ)v”(e_yq,,ﬁh), we obtain
I [logg(s)]—1
d—1
(8) —HS b (t)Fd(17 S) = — E E (Cl‘7qh+mwl'15)|yzeqd7m,
i=1 td=m % h=0  0<j1,.js<m

completing the proof of the first part of Theorem 1, namely, that H exists, and is a rational fraction
of K(Y)[t,):
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Remark 13. We provide, additionally, formulas which show how the functions 9, 4 can be viewed
as generating series of the sums Fy(n;s). Let d > 0 be fixed. If 2 € Cw is such that |z| > ¢,

then, for all @ € A with degy(a) < d, we have - = %ﬁ = %Zizo (%)l Hence,

_  alh)alt) e
) = Y M) gy
a€A(d) i>0
s+1=0
(mod g — 1)
Similarly, if s > 0, |z| <1 and a # 0, we have that ﬁ = —% 1E§ = —% ijo (g)J and
Yealz) = > FAF(1+js).
j=0
j+1—s=0
(mod g — 1)

2.1.3. Conclusion of the proof of Theorem 1.
Proposition 14. Assume that s > q and s =1 (mod g — 1). Then, for all d > m, we have that
Hslyzqufnl = _E[S7d7

where Hg g is a non-zero polynomial of Alt,] of degree m — 1 = 2:‘1 int; foralli=1,...,s.

1

Proof. We note that lq_1Fy(1;s) € A[t,] and that, for d > m, the polynomial I;_1 F;4(1; s) is divisible
by big—m(t1) -+ - ba—m(ts) in virtue of [3, Proposition 10].

One easily calculates, for each 1 < i < s, that the degree in t; of F4(1;s) equals d — 1, and the
degree of bg_,,(t;) in ¢; equals d — m. Since Fy(1;s)/Il; 4 € Alt,], we must have that the degree in
t; of this ratiois d — 1 — (d —m) =m — 1. O

Remark 15. The degree of Hy 4 in 6 can be easily deduced, for all d > m, from the arguments in
the proof of [3, Proposition 11]. We obtain for this degree
d—m

d

- 1
5Sd::q q_ 42 =m—14pgt™
q—1 q—1

)

in 6, where u = q;”:11 — m. To verify the displayed formula for d, 4, write s = m(¢g — 1) + 1 and

observe that m > 1 because s > ¢g. Since we will not use the degree in 6 of H, 4 for small d to
follow, we do not give the details of this argument here.

Integrality of Hs. We need an elementary fact.
Lemma 16. Let U=U(Y) be a polynomial of A[Y][t,] and M > 0 and integer such that, for all d
big enough,

U

Then, U= (Y7 —0)V with V € A[Y][t,].

€ Alt].

Proof. If U has degree < ¢™ in Y, then, for all d big enough, deg, (U(ﬁqd)) < O+ q%(¢M — 1) with
C a constant depending on U. Therefore, as d tends to infinity,

U(pe”
deg, (ﬁ) <C+q¥ (g™ —1) — ¢M o —,
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which implies that U(qu) = 0 for all d big enough, and U = 0 identically because the set {qu; d>
do} C Cw is Zariski-dense for all dy. This proves the Lemma in this case.
Now, if U has degree in Y which is > ¢™, we can write, by euclidean division (the polynomial

v" — 6 is monic in V), U = (Y9 — 0)V + W with V,W € A[Y][t,] and degy (W) < ¢™. Hence,
by the first part of the proof, W = 0. 0

First we show that H, € A[Y][t,]. Indeed, by (8), we can write
U)
(0 _ qu) .. (0 _ Yq7n+m0)7

H(Y) =

where #o = [log,(s)] — 1 and U is a polynomial in A[Y][t,]. By Proposition 14, H,(67) € Alt.],

J
for all 7 > 0, and we deduce that v ) ] € Alt,], for each m < k < m+ kg and all j > 0. By

(9_9q1+k
u)
(0-ya")
O—Y7" 90—y . 0—YT" are relatively prime, it follows that H, € A[Y][t,], as claimed.

We end the proof of Theorem 1 by verifying the quantitative data using Proposition 14. We
set v = m — 1 (note that p = 0 in case s = q), so that deg, (H,q) = v, for all d > m. Writing

Hs =3 ci(Y)t: with ¢;(Y) € A[Y] and Hy g = ic;dﬁ with ¢} ; € A (®), we have

Lemma 16, we conclude that

€ Alt,, Y], for each m < k < m + ko. Since the polynomials

d—
ci(0? m) = c;d,

for all d > m and for all i. This means that deg, (H,) = deg;, (Hsq) = v for all d > m and
i=1,...,s. This confirms the data on the degree in ¢; for all . Now that we know H, € A[t,,Y],
the claim on the degree of Hy in Y follows from the proof of Theorem 3 below; specifically, see
Lemma 18. O

2.2. Proof of Theorem 3. We suppose that s > ¢ is an integer such that s =1 (mod ¢ —1). We
know from [3, 5] that, in Theorem 2,
B, = (~1) A1 € AL,

a polynomial which is monic of degree 2= in 6. We choose a root (—9)q+1 of —@ and we set:

d—1 —1
Fi o= 0(—0)TT H (1 - %) € (0w K,
L d—1 ¢ —1 .
wa(t) = (=0)aT 1—— € (=0)7TK(t)".
! 130 < Z )

Then, in Ty,

lim Td = T
d—o00 wd,m(tl)---wd,m(ts) w(tl)u-w(ts)'

We note that degy(7q) = qiil and degy(wq(t)) = ﬁ,

We recall that we have set 65 4 := qqd__lq — sqd;: L and that 8s.a =m — 1+ pg?™™, and we stress

that we do not use the connection with H 4 here.

5We are adopting multi-index notations, so that, if 3 = (i1,...,4s) € N°, then t& = til cotls
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Lemma 17. We have, in K|t.], that:

- = (e bl bienlle) g,
wdfm(tl) e wdfm(ts) ldfl
Proof. We note that

. d—1 _eqi
%d == 9(—9)F H m
=1

and that

g
u
—~
-
N~—
Il
—~

|
>
S—
Q
-

M
—
—
R N
o~
1
<| ]
Y s
\—/

so that
d—m

= (=0T ()T g (t1) - ba—m ()

4 sqd—m _ e o
= (@) T ba—m(t1) -+ ba—m(ts)
la—1

Td
wdfm(tl) e wdfm(ts)

= _(—e)ésvd*erl bd*m(tl) e bdfm(ts)
la—1

)

d d—1 _
because % - 5271 =0sa+ % — qfl =0s,a+ ﬁ =0sqa—m+1. O

The following lemma concludes the proof of Theorem 3 and supplies the degree in Y of H.

Lemma 18. We have, in Ty:

. _d—m d—
dli)rEOH TUHHG (0T ) = = A s
Hence, the degree in'Y of Hy equals p := q;n__ll —m.

Proof. By Theorem 2, we have A\, s = A1 s € A[t,], which is a polynomial of degree m —1 = 2:‘{ in
0, and by
Lemma 17 that

t1)--- ts .
)\1)5 = wdhm Fd(l,s)
7T —00
= lim wd_m(tl) N 'Wd—m(ts) bd—m(tl) e bd—m(ts)Hs(qufm)
d—o0 Tq ldfl
= — lim (=)™ 1 Ssam, (97 ")
d—o0

— lim 9" "rE (07

d— o0
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(observe that u € Z is divisible by 2).
Finally, since we have shown that H is a polynomial in Y, the claim on the degrees is now
clear. |

2.3. Proof of Theorem 4. For convenience of the reader, we recall that we have set:

r,— HiZd (1_ %) € Ty(Ko0).

S t
Hidem Hj:l (1 - 937:)

We need the following result where we suppose that s =1+ m(¢ — 1) with m > 0.

Lemma 19. For any integer r with 0 < r < p there exists a polynomial
L € Alt,, 0][Y],

monic of degree p —r in 'Y, such that, for all d > m,

(9) o= Dy =T, (09 ") + wa,

where (Wq)a>m s a sequence of elements of Ts(Ko) which tends to zero as d tends to infinity.

d—m

Proof. We first need to focus on some general, elementary facts about formal series. Let f =
1+ >.5, fiY? be a formal series of A[t,][[Y]]*, with coefficients f; € F,[t,] C A[t,]. Then, both f
and its inverse f~! can be evaluated at any Y = y € T, with ||y|| < 1, where we recall that | - ||
denotes the Gauss norm of the Tate algebra T,. We further note that f, f~! never vanish in the
disk of the y’s such that ||y|| < 1. Also, if g =14 ) ,5, ¢:;Y" is a formal series of A[t][[Y]]* with
coefficients g; € A C A[t,] such that degy(g;) = o(i€) for all € > 0 (typically, a logarithmic growth),
then, the evaluation of g at any Y = y € T such that ||y|| < 1 is allowed and yields a convergent
series. Hence, the evaluation of the series h = gf ! € A[t,][[Y]]* at Y = y as above is possible.

Additionally, if now (yq)a>d, is a sequence of elements of Ty with [|yg|| < 1 such that ||yq| — 0
as d — oo, then, in virtue of the ultrametric inequality, for any integer k, there exists a polynomial
Hy, € Alt,][Y] of degree < k in Y, such that

(10) yy h(ya) = Hy(y; ") + wa,

where (wq)d>d, is a sequence of elements of T, such that limg_,c wqg = 0.
We set, for all d > 0, yq4 = #. We observe that, for all d > 1,

/

I (1- ) = X oo,

i>d n>0

where the sum is restricted to the integers n which have, in their expansion in base ¢, only 0,1 as
digits. The growth of the degrees in 6 of the coefficients of the formal series in y4 for any fixed d is
then logarithmic.

Also, we have, for any integer m > 0 and d > m,

[T (1-55) = X o,

i>d—m n>0

In the preamble of the proof, we can thus set:

fi= H Z/(—tj)&(nj)ynjv g= Z/(_Q)Zq(n)qun € ALY

7j=1n;>0 n>0
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and we have, setting h := gf~! € A[t,][[Y]]*, that hA(ya—m) = L4. The identity (9) of the lemma
now follows by using (10) with £ = y — r and the polynomial I'; , is easily seen to be monic of the
claimed degree. 0

Remark 20. For example, I's 1 =Y + ¢, 4+ -+ ¢s.

We can now prove Theorem 4. We suppose that d > m and that m > 1. We recall from Lemma
17 that

—_

_(_9)6S,d7m+1 wd*m(tl) ~ : wdfm(ts)
Td

a
2

= (—g)ymltae® T omt Wi=m(t1) - Wazm(ts)

d

_e‘uqdfnl Wdfm(tl) tee U.}dfm(ts)
Td

because p is even. After explicit expansion of (1), we write

I, L Fa(1; s) Z D" =D,0m " 4y e
i=r+1 J

Dividing both sides by 877" " we deduce that

—m Wi (t1) * - Wd—m
ID)T:_Q(H—r)qd wd (1)~ wd ( Fdls ZDH_TQQ + ug,

Td

with ug a sequence of elements of T,(K ) tending to zero. We can rewrite this as

m t —m
D, = _gn—ra®” MFdFdls ZD1+T9q T ug,

™

_ _PS)T(qu ’")M

Fd 1 S ZDH-TH g + v4,
for another sequence of elements vg of Ty(K) tending to zero as d — oo, by using (9) of Lemma
19. The theorem follows. O

2.4. Proof of Theorem 7. For a € A'(i) with ¢ > 0 and for j an index between 1 and ¢,
we can write a(t;) = t5 + b(t;) where b € F[t] is a polynomial with degree in ¢ strictly smaller
than ¢ (depending on a). Hence, we can write, with G5 4 a polynomial of K|[t,] such that for all

j=1,...,8, deg, (Gsa) <d -1

d—1
nao- Yy e

i=0 a€ AT (i)
a(ty)---a(ty )tk - a1
_ Z ( 1) ( ) s/ +1 s + Gs,d
a€A+(d—1) a

= 17 +11 #7180 1(1;8') + Gy a-
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In particular, Sy_1(1,s') € K|t,] is the coefficient of % oy etd!
Now, by Theorem 1 we see that S;_1(1,s") is the coefficient of td/ +11 in the polynomial
s ¢Hgly_yga-m (for all d > m, with s = m(q — 1) +1). Since the coefficient of t4; +"f~ pd—m
in bg—m(t1) -+ - ba—m(ts) is equal to bg_p(t1) -+ bg—m(ts), we deduce that Sq_1(1,s’) is equal to
Mo sa = aa/ T}y 1 ba—m(ti) times the coefficient of tg};ll~-~t;”*1 of Hi|y _gea—m which is

Hs,s' |Y:9qd*m' O

of the polynomial F, 4 € K|t,].
td71

2.5. Examples. We give some formulas without proof. If s = ¢, then m = 1, and it can be proved
that Hy = —1 and Ay s = 1. If s = 2¢ — 1, we have that m = 2, u = ¢ — 1 and the following formula
holds, when ¢ > 2:

2g—1
(11) Hag1= [ (ti=Y)+ (Y7 = 0)eq1(ts = Y,...,t.—Y) € Alt,],
i=1
where the polynomials e; are the elementary symmetric polynomials that, in the variables Ty, ..., Tk,

is defined by:

H(X—T XS+Z 1) X5 e (Ty,. .., Ty).
i=1
Developing (11) we obtain, again in the case ¢ > 2:

q—1
Hoy—1 = Z(_l)Z(Qqulfi —fOeq_1-;)Y"

i=0
with e; = e;(t,), from which it is easy to see that Ha,—1 has the following partial degrees:
deg;, (Haq—1) = 1for alli, degy(Hag—1) = 1 and degy- (Haq—1) = # = g—1 in agreement with the The-
orem 1. Furthermore, the coefficient of Y is equal to —Bag—1 = —A1,2q—1 = =0+ e4(t1, ..., t2g—1)
(see the examples in [5]).

Also, computing the coefficient of the appropriate monomial in t‘li_l, ...,t% 1 asin §2.4 from the

formula (11), it is easy to deduce the formulas

ba—1(t1) - ba—1(ts)

Sa—1(1;8) = I

ford>1and s =0,...,q — 1. Further, we compute easily, for d > 2:

q
Sdfl(la q) = bd72(t1)l(.j' .1bd72(tq) <H(tz - oqdiz) + eqd71 - 0) )

i=1

which agrees with [17, Corollary 4.1.8]. The analysis of the case ¢ = 2 is similar but we will not
describe it here. For s = 3¢ — 2 we have m = 3 and pu = ¢ + q. We refrain from displaying here
the explicit formulas we obtain.

3. PROPERTIES OF FINITE ZETA VALUES

We first give the exact definition of the embedding ¢ in the statement of Theorem 9. The ring
A of the introduction is easily seen to be an Fs-algebra (use the diagonal embedding of F's in Ay).
The map =z — 29 induces an F-linear automorphism of F[f]/PF[f], hence, component-wise,
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an Fg-linear automorphism of A, that we denote again by 7. There is a natural injective ring
homomorphism

K ®p, Fo 5 A,

uniquely defined by sending r € K to the sequence of its reductions mod P, well defined for almost
all primes P. Now, ¢ extends to K/P™ ®r, F's in an unique way by setting, for r € K/r™ ®Qr, F's,

ur)y =77"0(7¥(r))), w>0.
Lemma 21. Assuming that n,s > 0 and that n # s (mod ¢ — 1), we have that Z4(n;s) € AY.

Proof. Let P be a prime of A of degree d, let vp : K[t,] — Z U {o0} be the P-adic valuation
normalized by vp(P) = 1. If f € K[t,]\ {0}, then vp(f(69",...,09")) > vp(f), for any choice of

ki,...,ks € Z non-negative integers. Let k be a positive integer such that N = s¢* —n > 0, and
note that since n # s (mod g — 1), we have that N # 0 (mod ¢ — 1). Let ev : K[t,] = K be the
ring homomorphism defined by the substitution ¢; — 97" for all i = 1,...,s. On one hand, we have

that, if d is big enough,
ev(Fy(n;s)) = BG(N;0) := Z Z a¥ e A\ {0},
120 ac At (i)
by [10, Remark 8.13.8 1] (because N > 0 and N # 0 (mod ¢ — 1)). On the other hand,
vp(ev(Fq(n;s))) > vp(Fy(n;s)).

Assuming by contradiction that Z4(n;s) € AX, there would exist an infinite sequence of primes
P such that vp(Fy(n;s)) > 0. But then, the non-zero polynomial BG(N;0) would have infinitely
many distinct divisors in A, hence yielding a contradiction. 0

3.1. Proof of Theorem 9. Let P be a prime of A. We observe that, for d = degy(P), lg—1 =
6—67)-.-(0—6" ") = 20 , = P'(0) (mod P). Also, ba(t) = (t —0)-(t — 91" ") = P(t)
t=

(mod P). Therefore:

P(t)--- P(ts)
PO) [Ti=y [T (= 097)

P(t1)--- P(ts)
= S = —  (mod P).

Pl(o) Hi:l Hj:l(ti — 09 ])
Also, we have that H|y _pja-m = H|y_p,-m (mod P).
We set

Hs,d =

Hsly_gg—m 1/
Hi,s ' = —17s mo - € K /v @r, F's,
[T I (6 = 697) !
and this gives Z4(1;s) = ﬁLsL(uLs).
Now we tackle the non-vanishing of ¢(u1,5). Let d > 0 be an integer, define the polynomial

Uy(X) = ))((qj:)?, of degree ¢?—gq. Then, modulo W4(X), the powers 1, X, X2,..., X9'~1-1 ¢ F,[X]
are linearly independent over F,. We set now, for m > 1 and for d big enough, w := pgm +m—1,
and we observe that, again for d big enough, 0 < w < ¢% —q. Hence, the images of 1,6, ...,0" in the
ring Fy[t,,0]/(Pq) are Fy-linearly independent (where g = U4(0)) and a polynomial H € Fylt,, 0]
of degree < w in 6 is zero modulo ¥, if and only if it is identically zero. Now, one easily shows using
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the degree in Y of Hj that for all d sufficiently large, —H, 4 = —H; (qufm) is a monic polynomial
in 6 of degree w. In particular, the image of —H, 4 in Fyt,, 0]/(¥4) is non-zero.

We now end the proof of the non-vanishing of u; s, equivalent to the non-vanishing of ¢(u1,s),
via a proof by contradiction. Let us suppose that for all d big enough, and for any P prime of A of
degree d, we have Hy g = 0 (mod P). In particular, this occurs for all large enough prime numbers

d = w. Now,
.= [ P
P;degy(P)=w

and the reduction of Hy - modulo ¥ is zero, giving the contradiction. Observe also that ¢(u1,5) €
AZ. O

3.2. Proof of Theorem 10. We recall [3, Lemma 4] that the sum
Sjs = Z a(ty) - -a(ts) € Fylt,]

a€A*(j)
vanishes if and only if j(¢ — 1) > s. In particular, for N > 0 and for all j big enough, S;(—N;s) =
2aeA+ () aVa(t1)---a(ts) = 0, and the sum

BG(N;s) = Z Z aVa(ty)---alts)
720 acAt(j)
represents a polynomial of Alt,].
First we motivate the proof. Noticing that

Sinis)= > aalt)---a(ts)= Y. a® " T'Ma(t)--a(ty,) (mod P)
a€A*(j) a€AT(j)

deg P

for all primes P such that ¢ > n, our goal is to prove that

Fiaegp(n;s) = BG(qdegP —1—mn;s) (mod P),

for all irreducibles P of large enough degree, under the assumption that ¢,(n) > s. This amounts
to showing that, if ¢,(n) > s, then, for all j > d, we have

S el alt) =0
a€AT(4)
and this follows immediately from [18, Theorem 3.1]. We give another proof here via a specialization
argument employing [3, Lemma 4].

Fix integers n > 1 and s > 0, and assume ¢4(n) > s. Let d’ be any integer such that ¢ > n.

Set s’ := ﬂq(qd/ —1—mn)+s. Develop ¢¢ —1—n= Z?:BI ¢;iq¢" in base ¢, so that the coefficients c;

are in {0,...,q — 1}. Letting K[t,] = K]t,] be the ring homomorphism obtained by sending the

vector of variables t,, = (t1,...,ts) to the vector of values
d’ -1 d’' -1
0,...,0,09,...,09, ....09 ...07 ty,...,t5),
—— —— [ —
co times  c¢; times cqr_q times
we have

ev(S)s) = Z aqd,*lfna(tl) ---ats) = S;(n;s) (mod P),
a€AT(j)
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for all primes P of degree d’ with qd/ > n. In particular, by Simon’s Lemma, if j(¢ — 1) > ', then
S« = 0 and, thus, S;(n;s) =0 (mod P), for all primes P such that ¢%°¢” > n. Now, we notice
that

§ = Ly(q" =1 —=n)+s="Ly(q" —1)+5—Ly(n) =d(g—1)+5—Lly(n),
where the first equality holds as there is no base ¢ carry over in the sum (qd/ —1—n)+n. Hence, if
we suppose now that d’ = deg P and {4(n) > s, we find that s’ < j(¢— 1) for all j > d’, and hence
for all primes P such that ¢4 > n, we have

Fieg,(p)-1(n; s) = BG(¢? —1—mn;s) (mod P).

The vanishing result follows by observing that BG(¢g? — 1 —n;s) = 0if ¢ > nand n = s
(mod ¢ — 1), by [18, Theorem 4.2]. O

4. FURTHER PROPERTIES OF FINITE ZETA VALUES

4.1. Period properties. We study a few additional properties of the elements of Ay

(), o (7).

that we present here as some kind of finite analogues of the elements 7 and w(t).

The transcendence over K of T and the transcendence of w over K (t) can be proved in a variety
of ways (see for example the techniques of Papanikolas’ [14]). From this, we immediately deduce
that ™ and w are algebraically independent over the field K(¢). Now, we say that two elements
x,y € Ay are algebraically independent if the only polynomial Q € K1/P~ ®@r, Fs[X,Y] such that
Q(z,y) = 0 (for the K/P™ ®r, F-algebra structure of A;) is the zero polynomial. Similarly, we
have a notion of element = € A; which is transcendental over K1/P~ ®F, F's (). We presently do
not know if 7 and @ are algebraically independent. Nevertheless, we can prove that 7 is irrational
(in other words, in Ag, 7 ¢ ¢(K)) and that @ € A; is transcendental.

Theorem 22. 7 s irrational.

Proof. Fix d > 1. For 1 < k < d, choose (a1,...,a5) € IFZ and relatively prime polynomials
f,g € A. Denote by #(d) the cardinality of the set of primes P € A of degree d > k such that P =g
(mod f) and

degy(P — 0% — 010771 — - — 0% < d — k.
We now invoke the following result of Hayes [11], strengthening Artin’s analogue of the Prime
Number Theorem for the field K.

Theorem 23 (Hayes). We have

= g+ (%)

with 0 <Y < 1, and where ® is the function field analogue of Fuler’s o-function relative to the ring
A()

6These are not well behaved properties. Following a remark of M. Kaneko, it is possible to construct, in A;, a
non-zero element x which is a root of a non-zero polynomial in K ®p, F's[X] (hence, it is not “transcendental”) but
also such that z is not a root of any irreducible polynomial of K ®r, F's (X].

"For the definition and the basic properties of @, see Rosen, [20, Chapter 1].
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In particular, for all n > 1 fixed, there exist infinitely many primes P of the form
(12) P =0 4 grO—m+l

(recall that p is the characteristic of Fy). For commodity, we denote by P, the (infinite) set of
primes P of the form (12).

Let us suppose, by contradiction, that there exists a k € K such that ¢(xk) = —1/7, and write
k = a/b, with a,b € A coprime. Say degb = n. Then, using euclidean division, for all primes
P € P, we may write

a=bP +QpP,

for some Qp € A, since, by construction: deg(bP’) < deg P and a = bP’ (mod P). But the degree
of the right side of the last displayed equation tends to infinity, while the degree of the left side is
constant, giving the desired contraction. O

Conjecture 24. 7 is transcendental over K.
This does not seem to follow from Hayes’ Theorem 23.

Remark 25. We point out another perhaps interesting “negative feature” related to 7: it is not
possible to interpolate the map Fy® > ¢ — PL(() € Fg® by an element of T, where Py € Fy[X] is
the minimal polynomial of ¢ and Fg“ denotes the algebraic closure of Fy in Cs. In other words,
there is no function f € T such that, for all ¢ € Fg¢, f(¢) = P/(¢). We skip the proof as this is
superfluous for our purposes here.

Lemma 26. @ is transcendental over K(t).

Proof. Let us suppose that the statement is false. Then, there exist polynomials ay,...,ay € Alt]
such that agany # 0, and such that for all but finitely many primes P, we have

ag + alP(t) —+ -4 aNP(t)N =rpP,

for rp € A[t]. When the degree d of P is big enough, we have rp = 0. Indeed, otherwise, the degree
in € of the left-hand side would be bounded from above with the degree of the right-hand side
tending to infinity. But then, there exists P a prime such that rp = 0 and such that the left-hand
side does not vanish. O

Remark 27. In particular, we deduce from the previous two results and Theorem 9 that, for all
integers s = 1 (mod ¢ — 1), the finite zeta value Z4(1;s) is not an element of t(K ®r, F).

The elements 7 and & should not be considered as exact analogues of T and w. To have closer
analogues, we should multiply them by appropriate Carlitz #-torsion points. For example we have,
in the convergent product defining the function of Anderson and Thakur w, the factor (—H)ﬁ
which is a point of #-torsion for the Carlitz module.

5. FINAL REMARKS

We come back to the Q-algebra Ag and to the finite multiple zeta values, which we recall are
defined, for k1,...,k,. € Z, by

C_A(kl,...,kr): < Z ﬁ (HlOdp)) GAQ.

O<ni<-<np<p 'v1 T »

Again, no one of these elements is currently known to be non-zero.
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These elements have recently been the object of extensive investigation by Kaneko, Kontsevich,
Hoffman, Ohno, Zagier, Zhao, et al. A strong motivation is the following conjecture. Let Z 4 be
the Q-sub-algebra of Ag generated by the finite multi-zeta values and Zg be Q-sub-algebra of R[T]
generated by the “renormalized multiple zeta values,” which are polynomials of R[T] with T" an
indeterminate which algebraically represents the divergent series >, - n~! (described in the paper
of Thara, Kaneko and Zagier [12]). We consider the map 1 : {Ca(k1,.. ., kr);7 > 1, k1, ... kr >
0} — Zg defined by

(13) C.A(klv R kT) = Z(_l)ki+1+“'+kr<(k17 ) kl)c(k’l“v KRR ki+1)'
i=0
Conjecture 28 (Kaneko-Zagier, [13]). The map n induces a Q-algebra isomorphism
ZR
Zp— ,
e

with ((2) = 3,5, n=2.
The following identities have been proved by Zhao [24]:
ki +k
(1) Gathrte) = (=0 (M) By, (o )
The identity (14) holds for all integers k1, ke > 1. We deduce the formula
Ca(l,k—1)=(Bp—r (modp)), € Ag, k >1 odd,

where B,, denotes the n-th Bernoulli number in Q (8). We have the following conjecture, naturally
related to Conjecture 28.

p

Conjecture 29 (Kaneko-Zagier). For all odd integers k > 3, (Bp—k (mod p)), € Ag is non-zero.

We now come back to our framework. The Bernoulli-Carlitz numbers BC; may be defined in a
variety of ways, for example as the coefficients multiplied by a Carlitz factorial of the reciprocal of
the Carlitz exponential

-1
Zizqi71 — BCij
—~ D; — Tl
i>0 §>0
as initially discovered by Carlitz [8]; note that BC; # 0 implies that j = 0 (mod ¢ — 1). One also
has Carlitz’s identity from ibid.

3

BCj =7 11;¢a(j50),
which holds for all positive j =0 (mod g—1). These two descriptions indicate a formal analogy with
the classical Bernoulli numbers, but the analogy goes much deeper as demonstrated in Taelman’s
analog of the Herbrand-Ribet Theorem for the Carlitz module [22] and several generalizations
thereafter, e.g. in [5].

Angles, Ngo Dac and Tavares Ribeiro have informed us that they proved the following striking
property, proving the analog to Conjecture 29 in the Carlitz setting. If s > 1 and s =1 (mod ¢—1),
the point

(BC|p‘,S (mod P))P € Ay,

8For k = 1 the behavior is slightly different and Zhao’s formula (14) does not hold. Instead, we have the formula
€(1,0) = 1 which is trivial. Note that, by the Theorem of Clausen-von Staudt, the denominator of Bj,_1 is divisible
by p and we have pBp_1 = —1 (mod p) for all p.
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not only is non-zero, but is in fact a unit in A, hence confirming a conjecture in [3]; their result
is available in [6]. There seems to be no analogue of (14) involving the Bernoulli-Carlitz fractions.
Instead of this, certain congruences of similar flavor, but involving the Bernoulli-Goss polynomials,
have been obtained in [2] as well as by the first author. This suggests that we are far away from
understanding what could be an analogue of Conjecture 28 in the Carlitzian framework, though
this was the initial motivation of our investigations.
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