We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior of the solution. We use a new method for this “scattering problem”, closer to the one used for the Cauchy problem. In this way we are able to compare the two results, emphasizing the different influence of the plasma echoes in the two approaches. In particular, we prove a non-perturbative result for the scattering problem.

Comparison between the Cauchy problem and the scattering problem for the Landau damping in the Vlasov-HMF equation / Benedetto, Dario; Caglioti, Emanuele; Rossi, Stefano. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 129:2(2022), pp. 215-238. [10.3233/ASY-211726]

Comparison between the Cauchy problem and the scattering problem for the Landau damping in the Vlasov-HMF equation

Benedetto Dario;Caglioti Emanuele
;
Rossi Stefano
2022

Abstract

We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior of the solution. We use a new method for this “scattering problem”, closer to the one used for the Cauchy problem. In this way we are able to compare the two results, emphasizing the different influence of the plasma echoes in the two approaches. In particular, we prove a non-perturbative result for the scattering problem.
2022
Landau damping; HMF model; plasma echoes
01 Pubblicazione su rivista::01a Articolo in rivista
Comparison between the Cauchy problem and the scattering problem for the Landau damping in the Vlasov-HMF equation / Benedetto, Dario; Caglioti, Emanuele; Rossi, Stefano. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 129:2(2022), pp. 215-238. [10.3233/ASY-211726]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_preprint_Comparison_2021.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 296.33 kB
Formato Adobe PDF
296.33 kB Adobe PDF
Benedetto_postprint_Comparison_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.02 MB
Formato Adobe PDF
6.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1584421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact