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Abstract. We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior
of the solution. We use a new method for this “scattering problem”, closer to the one used for the Cauchy problem. In this way
we are able to compare the two results, emphasizing the different influence of the plasma echoes in the two approaches. In
particular, we prove a non-perturbative result for the scattering problem.
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1. Introduction

In the spatially periodic case, the Vlasov—Poisson equation in the HMF approximation reads as

&S v, v)+vd [t x, v)+ FLN )3, [ x, v) =0, (D
where
HLS x) = —é‘r(f cos(r — y)f (2, y, v) dydv) (2)
STxR

is the mean-field force. Here f(z, x, v) is the normalized density of electrons with position v € 5" and
velocity » € R, in a collisionless electrically neutral plasma.

This model has been widely studied in the last decades being a handy reduction of the Vlasov—Poisson
equation, in which the singularity of the kernel is removed by replacing it with a cosine function. It
can be easily implemented numerically to study the features of a long-range interaction (see [1,2,10]).
Furthermore, this model is also a useful testing ground from a mathematical point of view for studying
issues about long-time behavior of solutions. This is the case of the Landau damping, i.e. the existence
of damped solutions near a stationary regular state. The damping consists in the existence of @ (r, v)
such that

lim (f(f, X, v)— w(r — vt, v)) =0, (3)

r—>+00
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which means that the flow governed by the mean-field force is asymptotically free, and /'(7, .+, v) con-
verges weakly to the mean of @ in the .x variable.

After Landau’s pioneering work of 1946 [14] for the linearized Vlasov equation, the damping phe-
nomenon for mean-field models has been extensively studied and understood in the last decades. The
first result for the nonlinear Vlasov—Poisson problem is proved by Caglioti and Maffei in [9]. They read
the problem as a scattering problem for the flow, by fixing the asymptotic datum « and finding a solution
J(z, x, v) satisfying (3). Subsequently, a proof with less restrictive hypotheses was given in [13].

In [17] Mouhot and Villani, introducing new mathematical techniques, solve the Cauchy problem for
the nonlinear Vlasov—Poisson equation, with analytic and Gevrey initial data, and show the existence
of the asymptotic state . A substantial analogy exists between the Landau damping in plasma physics
and the inviscid damping for the two-dimensional Euler equation. In fact in [4] the damping near the
Couette flow has been proved using different techniques, this gives rise to a new simpler proof of the
Landau damping result in [5] (see also the recent result in [11] for a more elementary proof). For what
concern the damping with Sobolev regularity, it has been shown by Lin and Zeng ([15,16]) that for
very low regularities Landau damping cannot occur. Although, in the case of the Vlasov-HMF equa-
tion with sufficiently high Sobolev regularity, Faou and Rousset in [10] have succeeded in proving the
damping with a polynomial rate. A Landau damping result for the full Vlasov—Poisson equation with
Sobolev data is still missing, however Bedrossian in [3] has given a negative answer to the possibility of
a straightforward extension to this setting of Mouhot and Villani’s work in [17].

The “backward” approach, which provides the solution of the scattering problem with a given @, and
the “forward” approach, which provides the solution for the Cauchy problem with £ (r, v) = f(0, x, v),
are different from many points of view, starting from the technical ones: in the backward approach, as
in [9] and [13] (and also in [6]), using a Lagrangian point of view, it is proved that the flow is close
to the free one. In this work, instead, in the HMF approximation, we adapt the forward techniques to
the backward problem to make a comparison in the case of analytic solutions. In particular, we discuss
the different way the two approaches overcome the difficulties due to the presence of the “echoes”,
i.e. resonances at certain times between the Fourier modes of the solution (for an in-depth analysis of
echoes in Vlasov—Poisson equation with analytic or Gevrey initial data, see again [11]). This highlights
a simplified structure of the norms used in the backward approach. Moreover, the backward technique
is unable to identify initial data for which damping occurs, but works also in a non-perturbative regime,
i.e. without requiring the solution to be a small perturbation of a stationary state.

In addition, as a by-product, we prove the backward nonlinear Landau damping for the HMF equation,
previously unknown. Perhaps, this Eulerian approach can be applied also in the study of the backward
problem for other interesting models.

The work is divided as follows: in Section 2 we prove the Landau damping in a perturbative regime
using the scattering approach. We give @ prros7 estimates in the time interval [0, 77 imposing that the
solution reaches the asymptotic state at time 7. Then we send 7 to infinity, obtaining the solution. In
Section 3, we reanalyze the problem in [z, 77, with 7" — +o00. With a more subtle estimate of the echoes
terms, we obtain a non-perturbative existence result for sufficiently large values of z. In Section 4 we
present a proof of the damping for the Cauchy problem in order to highlight the differences with the
backward approach, which we deepen in Section 5.

In both approaches, we need to control the loss of analytic regularity of the solutions. For this reason
we use techniques inspired from the abstract Cauchy—Kovalevskaya theory (see [8]), adapted to this kind
of problems in [7].
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2. The scattering problem
We consider solutions of (1) which are small perturbations of a spatially homogenous solution 7, i.c.
S v, v) = plv)+ er(z, x, v), (4)
and we assume 7 is an analytic function of the velocities. The equation verified by the perturbation 7 is
G (..x, v) + vdr (1, x, v) + Frl(t. )3, (np(v) + er@. x, v)) =0,

where the operator #'is defined in (2).
To state the asymptotic behavior as in (3), we define /4(z, x, v) = 7(z, ¥ + vz, v), which verifies the
following equation:

o = { YAl p+ ek}, (5)

where ¢/ is the potential field generated by the perturbation, evaluated along the free flow

wl/Alz, x, v) = cos(x — v+ (v— a)i)/%(f, v, u)dydu (6)

S xR

and where {, } is the Poisson bracket.

Recalling (3) and (4), we study the damping problem by setting @ (x, v) = »(v) + /i (r, v), 1.e. by
searching for a solution of (5) such that
|22, x, v) = hoo (. 0)| =0

lim
=400

where /., is a mean-zero analytic datum with || 4. ||4 < 400 for some A > 0.
Firstly, we study the evolution in the time interval [0, 77 considering the following problem:

la,ﬁf(r, voo)=(Ylh g+ e’y 0<r<T, -

(T, x, v) = Ao (X, V).

Then, we show that, for 7 — +o0, 47 converges to a solution /4, which solves the asymptotic problem.
We work in Fourier transform in $; x R, using the following notation:

1

AGE o / e e g(r, v)dr dv
Sy xR

with 72 € Z and & € R. In Fourier space the system is

o~ 1 —~ 7 —
O 1 (0.6) = 8,n 8] W G = nt) =&Y f"T(’)MM (1.6 — k0)(E — n1). (8)

A=+1
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where ;? is the Fourier transform of 7/ in the velocity and ;",f" for # = %1 is the electric field:
&) =W (2. n1). 9

Integrating equation (8) between [/, 7] and putting & = 77, we get an equation for ¢7:
— i (7 ~
g“,fr(f) =47, (7T, nt)— Eﬂf {’HT(J‘)]]'(H r— s)) das
/

T —
_ g 2 f ﬁ?'(f)ﬁ}r”i‘,(f, nt — ks)kn(s — 1) ds. (10)

A==1

In order to give @ prios7 estimates, it is convenient to consider (. ;’f I A7) as a coupled system, where (9)
is a consequence of the uniqueness.

A key point in Landau damping problems is the decay of the electric field. To show this we define the
norm of the electric field ¢/ as

My 7[¢7] = sup e¥|¢7 )] = sup |¢7 ). (11)
7€10,77 7€l0,77

We also define a norm which quantifies the analyticity of a function g of the phase space:

gl = sup g, £)), (12)
,

where x > 0 is a parameter and (7, £) = (1 + 7% + &2)?.
To take into account the decay of the analytic regularity, we define the weighted-in-time analytic norm
of the solution 47 (7, x, v) as

Vsl = s e n P ol (13)
(.1 1
where
D)i,r = {(ﬂ, [) € [05 /{) X [0’ T_L a‘/j(ﬂ’ [) > 0} (14)

and a{ (1, 1) = A — p — arg(2). The function a7 5(7) is the unique solution of the following ordinary
differential equation

ars(t) = —de W (1 +7) fOL<r< T (15)
ars(7) =0,
and measures the loss of analytic regularity of the solutions with respect to the final datum, as in (23)
below: it is 0 at time 7, and it is maximum at 7 = 0. In view of the limit 77 — +o00, we need the
following lemma, proved in the appendix.
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Lemma 2.1. For & > 0 the unigue solution of the backward Cauclyy problem (73) is positive and
decreasing i fime, and veries

ars(0) < C(d),

with C(8) — O when 8 goes ro zero. The solution a s(t) with initial datum
dx,s(0) = lim azr(0)
7=+
is posirive in [0, +00) and
lim a. s(2) = 0.
=400

As a conseguence, given A > 0, we can choose 8 sufficiently small such thar there exist i € (0, 1) jfor
which forany 7 > 0, [0, ¢] x [0, 7'l C D, 7.

We define 5 ; the space of function /Z(7, .x, v), defined for 7 € [0, 77, with &, /[/#] < o0, and
B~ as the space of functions 4(7, x, v) with 7 € [0, +oc) such that V; [/] < +oco, where V; [/]

is defined in the region 2; o = {(u, 7) € [0, A) x [0, +00), &% (., 1) > O} with &5 (pt, 1) = A — p0 —
aoo,cf(f)-

2.7, Estimates for {7
As we show more accurately in the following lemma, Eq. (10) for the field ¢7 has the structure of a
Volterra equation. In order to invert the term of order one in the equation, we use the following classical

result about the theory of Volterra operators.

Theorem 2.1 ([12], p. 45). Givern a Volterra equation of the form f(t) + j* f(t) = g(1), where
7
Jerr= [ j-s/6ds
0
with j € LY(R,). The resolvent kernel r, i.e. the unigue solution of the equation
r4+jxr=,j
belongs to L' (R..) if and only if
LdWe)# =1 jor No =0,
where
+o0
L) = f e 7 j(r)dr
0

s the Laplace mransform of K. The solution [ is then given by f(1) = g(t) — r * g(7).
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We can now state the inversion lemma. We set
. A~ )
Jnl?) = 1527 (1), (16)

and

,
H (1) = 17 (T, nt) — g S| LR a5, nt — ks)kn(s — 1) ds. (17)

f=£1Y7
Lemma 2.2, Zer A > 0 with || oo |l; < +00 and || 7|, < +00. Assume that
Ljle) #1, Ro =0
then
My (7] < oty [ HD.

£

We notice that the condition on the Laplace transform is fulfilled also by /| since /| = /.

Proof. Let us define ¢; (7) = * 77 (7 — 1), Fi(r) = 7~ HI (7 — r). Multiplying by ¢, (10) can
be rewritten as

Gi(1) + Ji % @u(1) = Fo(1). (18)
for 7 € [0, 77, where s;(r) = —e~*" /| (). We notice that 7; € Z' (R, ) and if Ro > 0
Lple)=—Lj 1+ ) # —1.

Then, from Theorem (2.1), the resolvent kernel 7; related to s; belongs to Z' (R, ). Convolving with 7;
in (18), we get

I
@a(r) = Fi(r) — j FaE— $)FL(5) ds.
0
Taking the absolute values, it holds

My ] = f:[lolpn‘é’»‘u(f)\ < My o[ A+ 17l oy Mo H]

and the thesis follow with C; = 1+ |7l o1 @, ). O
We now state the main estimate of this section.

Proposition 2.1. Zer i solution of (10) and suppose Ny 7|’ < +oo. Then, under the hypothesis of
Lemma (2.2), we have

G
M, 1[¢7] < Gz + 63 M (&N 27]. (19)

YV A — @ 5(0)
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Proof. From Lemma (2.2) we need only to estimate T[Hf 1. Being A7 (7, x, v) = /o (x, v), from
(17) we have

eV &7 (1) < sl

—A(F )=t (n—F,mi—ks)

+ ety (N A4 Y f A (20)

A=%£1

for any ¢/ < A — a7 4(s). Then, by choosing £ = 0, and using that @7 5(5) < @7.5(0) < a.5(0) we get

/I[)/[;T][Vi/[ﬁr] 4 —Als—2)
a7 ), CCTOE 0

| L ()] < sl +

2.2 Estimates for i’

Now we turn to give a Cauchy—Kovalevskaya estimate on 47 Due to the loss of analytic regularity in
time, it is crucial to use the weighted-norm introduced in (13).

Proposition 2.2. Zer 7 a solution of (7) and assume My 7[&7] < +o00 then the following estimate
holds.:

c C

Vo[ A7) < Clltoolls + < Mo &7Vl + o= 5167 W52 47]). 1)
Proof. Fixing u« < A — a7 4(2), from (8) we get

g |/‘7ﬂ(1‘, | < Mocllz + DL, &) + 9| £ (2, €))| (22)
where

. 7
7 1 TN
D, (1,&) = J/;.:I:liﬂf &, ()7 (£ — ns)ds
7

and
T —
El (&)= Z & T a5, & — ks)k(E — ns) ds.
A 1/
We estimate separately the two terms. As regards £),, since

e,a:(ﬁ £) e/z{fz & E—4r) e/t(»{',,{'s)

by the triangular inequality and taking

A+ p— ars(s)
H(s) = - 5
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Ze. the middle point between z and A — a7 s(s), we have

HNEN L £ < Y My ¢

A==+1

7
% f e (A—pe)s
s

where we have also used that (£1, £5) < € + 5. Noting that

/ZT(S)”MI)G—(ffﬁf)—/i)(ff—i'-f—&-f) |& — ns| ds.

e~ HOI—mln—ks—ks) | £ _ 0 < &
A—p—ars(s)

we get

T e CGrs (1 + )

92,0 < Sat ol s ln] [ 2 C T @3)

Being A — ¢ > a7 s(s) and using the definition of @7 s in (15)

e—(i—,a_)‘r(] —|—J’) 2.d

27 (5 < - Y T s)7'7
and then
i, 1
‘) |E (7, f)| MA 7[( ]NA,T[/IT]Wv

As regards D7 for o < A — ars(1),

r
8]0, < oAl [ O ey

/

C 7 gemaratls(l +g)
<Gt [ =7 ds
%) ' al(u, s)

where in the last inequality we have used that 1 — & > A — u — az5(s) = a’ (u, s) and also that
A — p > ay s(s). Computing the integral, we get

C a’ (. 7)
(n,& DT - A 7 l ( )
"ol )| < 3 A 7l )

We conclude the proof multiplying (22) by a” (1, #)'/2, and taking the supremum over 2, . [
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2.3, The backward result

Theorem 2.2. Zet /i, € L' (S" x R) analvtic such that || x|, < +00 with A > 0. Considern € L' (R)
analytic such that |1\, < 400. Moreover, assunie

LAplle) # 1, No =0,

with j as in (16). Then, for small values of &, there exisis a unigue solution hi(t, x, v) of (3) with
Mol < 400 such thar

f—l»i?-loo“/z(f, X, V) = feo (X, v)”oo =

with exponential rare.

Proof. For every 7" we get the unique solution 47 of (7) using the following iterative procedure. For
J=20and0 <7< 7let

v P~
ot (0. 8) = Jffdcl’*’ié“ﬂ("’)'T(f)ff (¢ —nt)

.r
—ey w0 mﬁ”*” T, & — k)& — 1), (24)

A==%£1

where ;l(j) " (¢) is defined by
LT > i (7 o,
a7 (t)=ﬁoc(1,f)—§/ 7Sy (= s)ds

-z Z s“”) L) (5.1 — ks)k(s — 1) ds,
x 177

.7 .7

where ¢"" = ¢/”"" and with initial step 27 (z, x, v) = ho (¥, V).
Then /z(f) 7 verifies the same bounds of the & prioriestimates in (19) and (21):

/Vz,r[;(j),r] < Ol oz + ECMJ[;U)’7]/\/,1_7[&(/)'7’]
and

Ny 2[5 7] < Cllioolla + CMy A 2271911 + eV [ 47F07])
< Cllolla+ eCMy 7 ¢ T (V7|47 ] + My o[ ATV 7)),

where we have used (19) in the last inequality and where C is a generic constant depending on A
and 4. Since N, 7[47] < C|l/ioll 4, taking ||/, sufficiently small, we get that 47, 7[¢7] and
Ny 71477 are uniformly bounded in / = 0. Then, taking &' > J'in (2.1), the time derivative of 4#¢7
is uniformly bounded in #, 7{-]. Hence there exists a subsequence 4“7 which converge to a function
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4" e B, r, while ;3_{"];")’7 converge to a function ¢7, such that 47, 7[¢7] < +oo. Then 42 (7, n1) = ¢ (1)
for #» = +£1 and it is a solution of the nonlinear problem (7).

We now extend /47 (7, x, v) = /o (x, v) for 7 = 7 and we consider the sequence of solutions {47},
with 47 € B, . We can see that 47 fulfills the Cauchy property as a function of 7 in By o with
A > A > a5500). In fact, fixed 7%, taking 77 = 7 > 7*, we have for # < 7

W (1, £) — W o (t, &)

. a7
= ﬂ,iln%f ((Z(J)— ;“,,r(f));’(é—fzs)a’f

T ol iy #7 .
—e) 4 f GO A OV (5,6 = ko) — ns) ds

2
b=x1 Y7

p 780, 7 P p »
_SZ T( lr—i'(‘faé__ s)— /1 ;;—,{'(J',f.(’_— J'))(é-—ﬂj') Ry

b=+l Y7

: 7
s [T @€ = nas
r

7T oy
+ey k/ QT(‘”/?F,,_,%(;, E— ks)(€ —ns)ds
i=x1 Y7

and an analogous of equation (10) holds for ¢/ — g"r . Doing estimates in the style of (19) and (21), we
get

My 7" =T < eCMy 7 [¢7 — T+ eCNy o[ 47 = 4] + g;ewﬂ*

and

Ve h7 = W< CMy 767 = &7+ eCMp 707 = ¢
(1+2)C _wip

CNy i — 47+ —L T2
+ eCNy oo ]+min{1,,1—,1f}36

(25)

Hence, using again the smallness of £, we conclude that

lim  sup Neo[4l — a7 =0.
7*—)+OO]12T27—* OO[ 7]

Being uniformly bounded in 5 ., the sequence {4} converge to a function /# € 5  and, passing to
the limit by dominated convergence in the integral formulation, /% (7, ., ) is solution of the nonlinear
equation (5) in [0, +00). So, taking z < A — @ s(0), we have that [|%(7, x, v) — /e (x, V)|lz — 0.

We get the uniqueness of the solutions with a similar procedure. Let g(7, x, ) and /#(z. x, v) be two
solutions of (5) with the same asymptotic datum /... Proceeding as before, we can prove that they verify
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the estimates (19) and (21). Hence, denoting ¢ the electric field associated to /%, we get
max (N, ol/2], My 0[é4]) € Cllsoll 2

and analogously for g(7, x, v). Estimating V; ~[¢ — /], we obtain the same estimates as in (25) without
the rest terms:

A = max(V oolg — 41, Myl — 1]) < Cle)A.

Using the smallness on ¢ as before, we have C'(g) < 1, from which the uniqueness follows.
We remark that in [9], in the case of the scattering problem for the Vlasov—Poisson equation, the
uniqueness is guaranteed for a wider class of solutions, not necessarily analytic. [J

3. Non-perturbative regime

Using the backward approach for large times it is possible to construct solutions without perturbating
around the homogeneous equilibrium 7(2), in the style of [9]. The price to pay is that the analytic
estimates hold only in [z, 4-00) for 7 large enough.

Fixed an analytic asymptotic state w(x, ¢), consider (1) and write

S, v)=ww)+ g, x, v),

where @ is the mean of @ (r, ¢) with respect to the .v variable. Then /%, x, v) = g(7, x + vz, v) verifies
the equation

ah = YA, w+ i

where ¢/ is defined as in (6). For 7" = r, let us consider the following sequence of problems

anl =yl .o+ h"}) << T,
(T, x, v) = (w— @)(r, v).

We introduce the weighted norm

Our[W = sup &)W @),
(w.0)es -

with the weight &7 (u, 1) = (A — . — Aay(s)), where A = A Ja.(7), X' < 4 and a,(s) is defined as
in (15) putting § = 1. Notice now that A is a diverging quantity for sufficiently large z. Here £2; » =
(., 1) €0, A)x|[z. 7, #7 (i, 1) > 0} and, as in the previous case, we can give the analogous definitions
for @; ~l-], & and ‘@CU"

We define g‘f (1) = 47, (¢, nt), n = £1, then ¢7 verifies the following equation:

,
&) = f &) )yt — s)ds+ W (2), (26)



12 D, Benederto et al. / Forward vs backward Landan dampirng

where we have defined
- 1 ro .
W) = o,(n7l) — = Z f &L AT i (5, nt — ks)hkn(t — s)ds
2 J=t1v7
and
. M~

VAR liaf (7). (27)

Asin (11) we denote

£al¢T] = sup e[ @] = sup | ).
e[z, 71 e[z, 71
We can now state the following theorem.
Theorem 3.1. Zerw € L' (S' x R) analyviic such that ||, < +oc and assume that
Ldplle) # 1, No =0, (28)
with j as in (27). Then, for sufficienily large T, there exisis a unigue solution i (x, v, 1) of
ah={ylhl. @+ h} Fr<r<+oo,
with @ solft] < +00 such that

|4 x, v) = (@—@)(x, v)| =0

lim
I—+00
with exponential rate.

Proof of theorem (3.1). The proof goes in the same way of (2.2) but instead of using the smallness of
&, we can use the size of A. Indeed as in Proposition (2.2) we can estimate 47 in [z, 7] where 47 verifies
the equation

7 o
S (S)/zrﬂ_,{,(.f, & — ks)(E — ns)ds

— B ~ ’
7eo=0u09-Y [

A==£1

with
i 7o, o~
D,0.6)= b3 [ & @i~ o).
Ia
We first treat the case 7 # 1. As in (23) and using A — x« > Aar(s) > ar(s) we have

7 = (—pu)s
(&) |57 r 7 e (1+s)
N0, )| < Nlwlla+ CPLr [T O o[ 4] f TG

/D)L T N /27' r Ae—ﬂ]'(.r_)j' | + 5
<l + C 7107l ]f ( )a’f
A ;O (5P
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and thus, since

d | Aear@s(| 4 )

Yoty pir A0+

PG 2O (u, 1"
we get

-, P &1 00, r147]
A E) /2/’1 g < C v .
AN O] < Nl + O S I

(29)

Now we estimate 2,(7, &), n = £1. Take &t < A — Aar(r),hence A — p£ > (A — . — Aar(s))/2, so we
get

7
6’”(”’5) |D,; (f, ff")| < CID,{/[(T] |Cf)"ﬁ.f e—(A—ﬂ)J'e—(/l—#J(é'—m-) (é‘: _ ”5) dy

Ia
Te—{lr(f)x(l +J‘)
<P |a)||-f S e
o[l . O ()

P rlE el ln( O (u, 7’))

< C —
h A O (e, 1)

Hence, multiplying by & (, 2)'/* in (29) and (30) we get

¢ ¢
01[W7] < Cllola+ 2 Prl¢Nella+ 2 £07(¢7]00s[47]

Regarding ¢7in (26), using (28) and (2.1) we have
P[] < LA W

We need better estimates than that in (20). We get them by splitting the two modes £ = £1 in

T —
oo R (5.1~ ks)k(t — s)ds = B+ B-y. (31)

=177

I[fd=—1,for ' <A— Aax(r)=2A1—- 1, we get

8| < 2] f " im0 Qurlh] e X ) (s — 1) ds
—1| < LA 7 , @(ﬂ_”ﬁ)lﬂ- K / A

!
6—2,(1 4

7
—A(s—2)

_ e (s — 7)ds

(A—p = A)7? f;

< P70 A7)

<07, 7'[5'7] (2% f[/%r] ge_“‘ﬂ”,
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where we have taken the infimum on ' € [0, A — A'] in the last inequality. In the other case, using that
@ — @ has mean zero in the v variable, we have

— r - —
WoGs.1—5)=Y f SOl 1 — 5 — KKt — 5) dl. (32)

f=£1 Y7

Replacing (32) in (31) we obtain

T —
e¥| 81| < £ r[¢”] f e s — DA o(s. 1 — 5)| ds
s

7T 7 Va
<P e —Qj’r[ﬁ,] e M (s — 1) f e di ds
Prl¢" 10 7177 T
= BA—A) ’
Hence
ﬁ —(A=)r e_}“P."[fT]
Pl < ||a)||,1+Ca,f[;f]gi,r[h’](?e (=1 +ﬁ

and we can reason as in the proof of the main theorem avoiding to use the smallness of &. [

Remark 3.1. We notice that in this setting we have obtained an Eulerian analog of the scattering result in
[9]. in the special case of the HMF model. In [9] Caglioti and Maftei, using the Lagrangian description
of the flow, obtain the damping result for the Vlasov—Poisson equation, by a fixed point technique,
considering an asymptotic state & with ||@||; < +oo such that

M

a)(x, U) g m

for some # > 0and A = Cv M, with C some purely numerical constant. Here we show that such class
of final data fulfills condition (28), if 1 > 74/ 7. Indeed, taking » = 1 in (26) and multiplying by e*
we get as in (18)

Sl () + @ * () =W — 1)

with /; (1) = —e /i (z) and ¢! (z) = *7~"¢] (7 — 7). So it is sufficient to notice that, since |2y <
M7, we have

+o0

0 M
|yl (0)| < M f e e M dr < nzﬁ <1, Ro =0
0

hence (2.1) holds.
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Remark 3.2. The non-perturbative scattering result in theorem (3.1) allows the choice of asymptotic
states @ within a distance of (1) from a given homogenous state #(z). This fact poses a significant
difference with respect to the forward perturbative results where, as we show in Section 4, given an
equilibrium #(#) which verify some stability properties, there exists an & > 0 such that every initial
data in an analytic neighborhood of 7 of O(e) with & < & verifies the Landau damping.

Actually, solutions of the backward and forward problems are of a different type. Indeed, in the case
of the attractive HMF model ,' it is easy to find non-homogeneous BGK stationary solutions @ (x, v) of
the HMF that can be chosen as scattering asymptotic datum for the HME, i.e. such that there exists a
solution /£, (x, v, 7) such that

lim | fo,(z, ¥, v) — @@ = v, v)| = 0.
I—>+00 *

This solution /, could never be a Landau Damping solution because it is not close, in a strong norm,
say Zj, to its weak asymptotic limit #(») which is given by the average in . of @ (r, ). Indeed at the
same /| distance from 7 there exists a BGK stationary solution of the HMF model.

We give an example of such BGK solution, which can be constructed using that any function of the
mean-field energy is an equilibrium. In this example we consider the attractive HMF model with

AL x) = fix-(f cos(r — v)f (1. v, v)dy ffv)
K

xR
in (1) and we choose, for &, v > 0 to be fixed,

e—ﬂmm-,w
Cf)ﬂ,u(-r’ v) = 7,
where #Z,(r, v) = % — vcos.t and Z is the normalizing constant. Using the simple structure of the
potential, we have that @, (r, ¢) is a stationary solution of the attractive HMF model, provided that the
following compatibility condition is fulfilled:

Q/g(u)sfa)ﬁ,,,(x, v)cos v dr dv = v.

By Taylor expansion £25(v) = Av/2 + o(fv) as v — 0, while £25(v) — 1 if v — +o00. Hence for
£ > 2 there exists at least one value 7 such that £2;(v) = 7.

Remark 3.3. In Section 2 we have proved exponential damping of solutions of the HMF model in
the scattering setting in the perturbative case, while in this section we prove the result for r large.
These two sections could have been partially joined by considering as a smallness parameter € = ¢~ %7,
However, given the different nature of the problems faced, we believe it is clearer to derive the two

results separately.

Except this paragraph, the choice of an attractive or repulsive potential is indifferent in this work.
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4. The Cauchy problem

In this section, instead of fixing an asymptotic condition, we study the Cauchy problem for equation
(1), with initial condition at time zero. We refer to Section 5 for the discussion of the differences and
advantages of the backward approach compared to this. Putting (8) in integral form we get

7;}1([! f'):Z/z(O- Sé.)”‘a‘ﬂ,il”;f Q(J’);’(f-ﬂj}d’f
0

I
=5 DA | T hss, &~ k)G — o) s, (33)

A==£1

and taking & = n7 for » = £1 in (33), we obtain the equation for the electric field:

sopr
&i(1) = 1, (0, 122) + f?% G ()7 (n(r — 5)) ds
0

& 4 -~
—3 Z k/z/(; Co (S, g (s, nt — ks)(t — 5) ds. (34)

A==*1

We introduce the weight Ay (&) = ") (n, £)” and the corresponding analytic norm of a generic
function / as

1Az, = sup AR @) /).

In the following we take a mean-zero initial datum /g such that |4 4, , < +00, for some Ay and p to
be fixed.

As done before, we want to study the coupled system (¢, #). For this purpose, we define the norm
of the electric field ¢ as

SLel = sup e (1)’ ¢ (@) (35)
B(1)=0
Here
B, 1) = Ay — A — darctan(z) (36)

with 4 < 24y/7 measures the loss of analytic regularity with respect to Ay.

We remark that the choice of the arctan function is not mandatory, contrary to the case in Section 2,
in which the regularity decay is more precisely prescribed by the structure of the estimates.

We define a weighted-in-time norm on /4 with two terms:

&L = KU + K74, (37)

Ao.g

where

Kl = sup |4@)|,,
BiA.0)=0 ’
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and

K’”-H[ﬁ_] = sup ﬂ(/l l)lﬁ ”]l(f)”/l.,erl
7 Bl.1)>0 ()7

The occurrence of the last term is in the spirit of the abstract Cauchy—Kovalevskaya theorem, while the
term A is due to the treatment of the two echoes term in the equation for ¢, as we show in Prop. (4.1).

41 Estimates for ¢

In the sequel, for p» > Ay, it is useful to introduce the quantity

Y/
Ju(l) = izf/ (n1)e™” (38)
and define
Go(t) = 71,(0, nt) — g > f G (S pe (5, 2 — Ks)hn(r — 5)ds. (39)
i=+170

Lemma 4.1. Zer 7(v) analvtic such that |17 ||, < 400 with y > Ag. If
Lple)#1 for Ko =0

then
018 < Cly. do) I Gl

Proof. Assume p = 0 and take A > 0 such that £#(A, 7) > 0 then
f 5
M) = f it — 5)e () ds+ M Go(r)
0

with 7; (7) = e~ %=/ (7). From Theorem (2.1), since 7; € £Z; (R, ) for y > Ay and

Lple)=0p+i—A)#1 for Re =0,

there exists a unique resolvent kernel 7 associated to 7; with »; € Z; (R, ). Doing the convolution with
7, we get

7
eM(r) = f 7t — 5)e™ Ga(s)ds + e G (1)
0
Taking the absolute value, we obtain

efu|§-(;)| < (l + ||’3i||1)’/2)

[Gel. (40)

and we get the thesis for » = 0 taking the supremum over S(4, 7) > (.
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Let us give the proof in the case z = 1, which it is not difficult to extend to the general one.

r
) = f Jilt — s)se™ ¢ (s)ds + Ze(1)

0

with
Zg(t)=/ Tt — $)(t — 5)e™(s)ds + e Go(1).
0

Using (40), we get

L) < Cly, o) sup | Z° )|
B(A,1)=>0

and
|Z5(0)| < Cv M) L1+ JLLG < Cly. do)JL LGl
using again (40). [

Proposition 4.1. 7z the ipotiesis of the previous lemma, let p = g + 3 with g = 3 fived Given
h(x, v, t) such that K;U‘U ; "4 < 400 we have

RIS C eCINKL T 4.

A0.q

Proof. From the previous lemma, we only need to estimate J:‘{; [ G.]. Multiplying by e*(7)# in (39) and
using (1)” < C({7 — 5)” + (5}”) we have

M| Gla@| < [AO)|,, ,+eh + £)

where

5= f 2 () (I (s, 1 = )| (1 = 5) + [T (s, 1+ )| (2 — 5)) ds
0

p 1 1
g[o Zi-ﬂ(‘f)”ﬁ(‘f)“iﬁ({t—5')2 =+ (f+.§.)2)ds

and

/ _ N o~
b= f a,,;(r)e““”%(l/%o(:f,t—.s-)l(f—.r)+ |72 (s, 7+ 5)| (14 5)) ds
0

s
1
gf Z,{,p(t")”ﬁ(‘f)“i,/)+l_dj'
0

()7
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Thus we obtain,

o I
/4 v
h < JL1A 4] i ((i rER (f+s>2) ds < CJ L1 4]

while, if p — ¢ > 2.

b < LKL A f o ds < CILLKT 4]
0 ©

=4 BV2(0, 5)
and this concludes the proof. [J
4.2, Estimates for
We start by showing how to split the term with |£ — 7] in (33).
Lemmad.2, Zeré € R, pe N, ne Z and A > 0 then
A0 E)NE — ns| < (A7 G — k) AT (5) + AL 6 = ks) AT ™ ()
with k= *1.
Proof. We notice that
|&— ns| = |&— ks + (k— n)s| < (5)(n— k, & — ks).
Using the triangular inequality
(n, &) < (n =k & — ks) + (£, £s),
the fact that
((n— k. &—ks)+ (k. 48))" < C((n— £, & — k) + (£, ks)”)
and £ = £1, we get (41). [

We now turn to estimate equation (33). As usual, we define

D1, &) = é;:,j:l”% ()7 (€ — ns) dls.
0

Lemma 4.3. Grven &4, (7), for A, g = 0 we have

|2@,., < Wl + |20,

Ag

te [ aapn@lhol,, + a0, .,
0

(41)

(42)
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Proof. Multiplying by Ai'q (£)in (33) and using (41), we get
AL @)y (2. )| < Wollzg.q + Ay7 (€| D2, )|

+ey f A )| G| A7 E = k)| lis. & — ks)| ds

A==l

+€Zf AV ()| (5)| AL (& — k5| i (5. & — ks)| ds.

f=%1
Since e (1, 5)7 < Ce* (5)?, after taking the supremum over 7, £ we obtain the thesis. ~ [J

Proposition 4.2. Zez p = g + 3 with g = 3 fived. Given ¢y such that J|§] < +00 we have

AQ

KA < ol + CEL

/ 1 24 2
7|+ aC(l a“) S K A,
Proof. We first estimate the term of order one in (33). If 2 = p,

A"\ Dy, O < AL

f e == (Am=P (£ Ly VP g
0
<ol 7@ "

where we have used that Ay? (&) < CAy? (¢ — ns)Ay? (ns) and the hypothesis on 7.
Now, since the norm (37) is composed by two parts, we start giving an estimate of the A* norm. Using
the result in (42) we obtain

K;:H—] [ ﬁ]
(5)r=1=a

7l K3/1
|2, 5 < [2O)],, , + 2@, 5+ £ /1<) f ,[ +

0.2
Using (43), we get

+ LA |, + sk .

Ao.q

11 < )]

Ap. 2

Next, we focus on K7 - Using (42) with g+ 1, we get

||/?(l)“ C”/[(O)”/l P + ”D([)”A 2+ + EJ/E)[(] (Al + AZ)

Ao+l TS

where

I ra
= [P, as < corm. = [ g
0 s

0 (s)7~1
For what concern 4, we take

Ao — darctan(s) — A
2

/1!(.5‘) =
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then

_ 120D, 1
|46 pr € =55

and we get the bound

PR o e pRGL ) T S ARG, 1)

where we have used that p > ¢ + 3 and the fact that the integral is exactly computable by

ping p4_ 1
d/T A.0)= 2 B2, ) r)?

Then we get, using ¢ = 3,

1/2
ﬂ(i,)f) e SN AN+ A) < e 7], ;“](C/Cs 4]+ CW*'[/:]) (44)

It remains to estimate the term of order one 2,(7, £). Using (43), we obtain

BOLDV
(0)?

Collecting the terms in (44) and (45) we conclude the proof. [J

Eolawl, ., < ey @

4.3, The forward result

Theorem 4.1. Zer us fiv p > g + 3 with g = 3 and consider hy(x, v) € L'(S' x R) a mean-zero
analvtic initial perturbation such that ||| 4, , < +00 for some Ay > 0. Let p(v) € L' (R) analvtic such
that |17 ||, < +oc with Ay < y. Moreover, assume

Ldalle)#1 g Na =0,

with j as in (38). Then there exists a unigue solution hi(x, v, r) of (5) with inifial datum hy such that

z“/jl (7] < +00 and there exists hoo with || xl3,, < +00 for A < Ay — 8 /2 such that

lim || Z2¢r, v, 1) = hioo (x, 0)|| =
=
with exponential rate.

Proof. The proof is analogous to the first part of Theorem (2.2). By a standard iterative procedure as
in (24) and using the smallness of the parameter &£, we get the existence of the unique solution /# in the
class of functions such that K;”"H < +00. Then the damping property follows from the estimate

loa@l,, < ce*

with 4 < Ao — drr /2. It follows that 4#(7) — /2, with exponential rate. [
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5. Backward vs forward

In the scattering problem, the decay of the analytic regularity, in the spirit of the abstract Cauchy—
Kovalevskaya theorem, is more difficult to establish (compare the definition of @’ («, 7) in (14), (15)
with that of A(4, 7) in (36)). Despite this fact, the scattering approach is easier. In particular, the bound
on the norm (11) guarantees that for any 7 = 0

|¢1(2)] < e,

while the bound on the norm (35) guarantees an estimate with a time correction: for any # = 0 and
A < Ay — darctan 7

|¢e1(0)] < eV /()7

More in general, the norm on /4 in (12), (13) is simpler than that in (37), in which we have to introduce
algebraic weights like (#)7 in order to obtain closed estimates.
This technical issue is mainly due to the different treatment of the plasma echoes, the resonances

which occur in (10) and (34) when #7 = £s, Ze. when # = £ = =£1, and 7 = . In the @-prio77 estimate
of ¢ in Proposition 2.1, there are no difficulties and we control the resonant terms, those with £ = #,
in the same way as the non-resonant ones, those with £ = —#. In Proposition 4.1, the echoes force us

to introduce the additional term A in the norm of 4. Note also that, in (2.2), we perform a more subtle
control of the echoes in (31), with an estimate in two time steps, by using (32) and the mean zero of
@ — . In this way, we obtain the backward non-perturbative result of Section 3.

The main reason of this different behavior is that the solution /4(7), with asymptotic datum /.., gairs
regularity as 7 increases, thanks to the damping properties of the free flow, while the solution /(7), with
initial datum /4, /oses regularity as 7 increases. The non-perturbative result clarifies this point: in some
sense for 7 € [ 7, +00), for large 7, the evolution is close to the free flow and it is not much affected by the
echoes. In the forward problem, at finite time, despite the pertubative setting, the free flow regularizing
property has not yet acted, then the effect of the echoes is more challenging.

These plasma echoes are considered the major technical difficulty in obtaining global in time estimates
for this kind of equations. We believe that the difference in the echo treatment is the main advantage of
the backward approach. This issue is confirmed by the comparison with the other works in the literature
which deal with the forward problem. In [10] [eq.s (2.1), (2.2)] an analogous term is introduced to treat
the two modes of the electric field; also in the general case in [5] [eq.s (2.12 a/b/c)] the norm is chosen
in order to control the so-called reaction and transport terms of the equation.

Appendix. Proof of Lemma (2.1)

Here we omit the symbol J from a7 5. Since a7 (7) is decreasing, we have, for any 7 € [0, 77,

7 7
ar@) = ar(7) + J/ e T 4 5)ds < ar(?) + o"[ eI 4 5)ds
0 0

— 1 1
< 7/ —— J——.
ar(r) + 7y + 20
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If § < 1, the minimum of ++48/x+48/x2, for x > 0, is less then ¢; 6/ and is reached in .+ < ¢»4'/3. Then,
if @7(0) = max(c|, ¢2)8'"3, the right-hand side reach the minimum for some 7, and then @,(0) < ¢4'7.
This implies that #,(0) < max (e, )83,

For any 7 < 7, ar is uniformly bounded and is increasing in 7', so it converges to a positive function
@ (7). For any time interval in [0, +00), by dominated convergence in the integral formulation of (15),
we get that a. () solves the differential equation with initial datum e (0).

Now we prove that lim,_, o, @~ (7) = 0. First notice that given 4 > 0 there exists 2y > 0 such that the
solution of

ia=—8e " +1)

with initial datum 4, exists for all times and «(7) = /4 for all time. To prove this, we choose &y >
b+ 6(1 /6 + 1/#) and consider the first time 7 such that #(7) = 4. Until z,

! s 1 1
&Od(t)=d‘/(;e (1+J)dy\<‘3(b+b2)

Then 7 = +o0.
Let «(0) be the initial datum of a generic solution (7). Set

Zr:inf{a(O)| lim a(f)>o},
I—+00

and let #(7) the solution with initial datum «. It is easy to prove that z(7) — 0, otherwise « is not the
infimum. We conclude the proof by noticing that @, (0) < @, then @ (#) is dominated by @(7) which is
a vanishing function.
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