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COMPARISON BETWEEN THE CAUCHY PROBLEM

AND THE SCATTERING PROBLEM FOR THE

LANDAU DAMPING IN THE VLASOV-HMF

EQUATION

DARIO BENEDETTO, EMANUELE CAGLIOTI, AND STEFANO ROSSI

Abstract. We analyze the analytic Landau damping problem for
the Vlasov-HMF equation, by fixing the asymptotic behavior of the
solution. We use a new method for this “scattering problem”, closer
to the one used for the Cauchy problem. In this way we are able
to compare the two results, emphasizing the different influence of
the plasma echoes in the two approaches. In particular, we prove
a non-perturbative result for the scattering problem.

1. Introduction

In the spatially periodic case, the Vlasov-Poisson equation in the
HMF approximation reads as

Btfpt, x, vq ` vBxfpt, x, vq ` F rf spt, xqBvfpt, x, vq “ 0, (1.1)

where

F rf spt, xq “ ´Bx

˜ż

S1ˆR

cospx´ yqfpt, y, vq dy dv
¸

(1.2)

is the mean-field force. Here fpt, x, vq is the normalized density of
electrons with position x P S1 and velocity v P R, in a collisionless
electrically neutral plasma.

This model has been widely studied in the last decades being a handy
reduction of the Vlasov-Poisson equation, in which the singularity of
the kernel is removed by replacing it with a cosine function. It can be
easily implemented numerically to study the features of a long-range
interaction (see [1], [2], [10]). Furthermore, this model is also a useful
testing ground from a mathematical point of view for studying issues
about long-time behavior of solutions. This is the case of the Lan-
dau damping, i.e. the existence of damped solutions near a stationary
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regular state. The damping consists in the existence of ωpx, vq such
that

lim
tÑ`8

pfpt, x, vq ´ ωpx´ vt, vqq “ 0, (1.3)

which means that the flow governed by the mean-field force is asymp-
totically free, and fpt, x, vq converges weakly to the mean of ω in the
x variable.

After Landau’s pioneering work of 1946 [14] for the linearized Vlasov
equation, the damping phenomenon for mean-field models has been
extensively studied and understood in the last decades. The first result
for the nonlinear Vlasov-Poisson problem is proved by Caglioti and
Maffei in [9]. They read the problem as a scattering problem for the
flow, by fixing the asymptotic datum ω and finding a solution fpt, x, vq
satisfying (1.3). Subsequently, a proof with less restrictive hypotheses
was given in [13].

In [17] Mouhot and Villani, introducing new mathematical tech-
niques, solve the Cauchy problem for the nonlinear Vlasov-Poisson
equation, with analytic and Gevrey initial data, and show the exis-
tence of the asymptotic state ω. A substantial analogy exists between
the Landau damping in plasma physics and the inviscid damping for
the two-dimensional Euler equation. In fact in [4] the damping near
the Couette flow has been proved using different technique, this gives
rise to a new simpler proof of the Landau damping result in [5] (see
also the recent result in [11] for a more elementary proof). For what
concern the damping with Sobolev regularity, it has been shown by
Lin and Zeng ([15], [16]) that for very low regularities Landau damp-
ing cannot occur. Although, in the case of the Vlasov-HMF equation
with sufficiently high Sobolev regularity, Faou and Rousset in [10] have
succeeded in proving the damping with a polynomial rate. A Landau
damping result for the full Vlasov-Poisson equation with Sobolev data
is still missing, however Bedrossian in [3] has given a negative answer to
the possibility of a straightforward extension to this setting of Mouhot
and Villani’s work in [17].

The “backward” approach, which provides the solution of the scatter-
ing problem with a given ω, and the “forward” approach, which provides
the solution for the Cauchy problem with f0px, vq “ fp0, x, vq, are dif-
ferent from many points of view, starting from the technical ones: in
the backward approach, as in [9] and [13] (and also in [6]), using a
Lagrangian point of view, it is proved that the flow is close to the free
one. In this work, instead, in the HMF approximation, we adapt the
forward techniques to the backward problem to make a comparison in
the case of analytic solutions. In particular, we discuss the different
way the two approaches overcome the difficulties due to the presence
of the “echoes”, i.e. resonances at certain times between the Fourier
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modes of the solution. This turns out to imply a simplified structure
of the norms used in the backward approach. Moreover, the backward
technique is unable to identify initial data for which damping occurs,
but works also in a non-perturbative regime, i.e. without requiring the
solution to be a small perturbation of a stationary state.

In addition, as a by-product, we prove the backward nonlinear Lan-
dau damping for the HMF equation, previously unknown. Perhaps,
this Eulerian approach can be applied also in the study of the back-
ward problem for other interesting models.

The work is divided as follows: in Section 2 we prove the Landau
damping in a perturbative regime using the scattering approach. We
give a priori estimates in the time interval r0, T s imposing that the
solution reaches the asymptotic state at time T . Then we send T to
infinity, obtaining the solution. In Section 3, we reanalyze the problem
in rτ, T s, with T Ñ `8 With a more subtle estimate of the echoes
terms, we obtain a non-perturbative existence result for sufficiently
large values of τ . In Section 4 we present a proof of the damping
for the Cauchy problem in order to highlight the differences with the
backward approach, which we deepen in Section 5.

In both approaches, we need to control the loss of analytic regularity
of the solutions. For this reason we use techniques inspired from the
abstract Cauchy-Kovalevskaya theory (see [8]), adapted to this kind of
problems in [7].

2. The scattering problem

We consider solutions of (1.1) which are small perturbations of a
spatially homogenous solution η, i.e.

fpt, x, vq “ ηpvq ` εrpt, x, vq, (2.1)

and we assume η is an analytic function of the velocities. The equation
verified by the perturbation r is

Btrpt, x, vq ` vBxrpt, x, vq ` F rrspt, xqBv

`
ηpvq ` εrpt, x, vq

˘
“ 0,

where the operator F is defined in (1.2).

To state the asymptotic behavior as in (1.3), we define hpt, x, vq “
rpt, x` vt, vq, which verifies the following equation:

Bth “ tψrhs, η ` εhu, (2.2)

where ψ is the potential field generated by the perturbation, evaluated
along the free flow

ψrhspt, x, vq “
ż

S1ˆR

cospx´ y ` pv ´ uqtqhpt, y, uq dy du (2.3)
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and where t, u is the Poisson bracket.

Recalling (1.3) and (2.1), we study the damping problem by setting
ωpx, vq “ ηpvq ` εh8px, vq, i.e. by searching a solution for (2.2) such
that

lim
tÑ`8

}hpt, x, vq ´ h8px, vq}8 “ 0

where h8 is a mean-zero analytic datum with }h8}λ ă `8 for some
λ ą 0.

Firstly, we study the evolution in the time interval r0, T s considering
the following problem:

#
Bth

T pt, x, vq “ tψrhT s, η ` εhTu 0 ď t ď T,

hT pT, x, vq “ h8px, vq (2.4)

Then, we show that, for T Ñ `8, hT converges to a solution h, which
solves the asymptotic problem.

We work in Fourier transform in S1ˆR, using the following notation:

pgnpξq “ 1

2π

ż

S1ˆR

e´inxe´ivξgpx, vq dx dv

with n P Z and ξ P R. In Fourier space the system is

Bt
xhT npt, ξq “ δn,˘1n

i

2
ζTn ptqrη1pξ´ntq´ε

ÿ

k“˘1

k
ζTk ptq
2

xhT n´kpt, ξ´ktqpξ´ntq,

(2.5)

where rη1 is the Fourier transform of η1 in the velocity and ζTn for n “ ˘1

is the electric field:

ζTn ptq “ xhT npt, ntq. (2.6)

Integrating equation (2.5) between rt, T s and putting ξ “ nt, we get
an equation for ζT :

ζTn ptq “ xhT npT, ntq ´ i

2
n

ż T

t

ζTn psqrη1pnpt´ sqq ds

´ ε

2

ÿ

k“˘1

ż T

t

ζTk psqxhT n´kps, nt´ ksqknps ´ tq ds. (2.7)

In order to give a priori estimates, it is convenient to consider pζT˘1
, hT q

as a coupled system, where (2.6) is a consequence of the uniqueness.

A key point in Landau damping problems is the decay of the electric
field. To show this we define the norm of the electric field ζT as

Mλ,T rζT s “ sup
tPr0,T s

eλt|ζT
1

ptq| “ sup
tPr0,T s

eλt|ζT´1
ptq|. (2.8)
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We also define a norm which quantifies the analyticity of a function
g of the phase space:

}g}µ “ sup
n,ξ

eµxn,ξy|pgnpξq|, (2.9)

where µ ą 0 is a parameter and xn, ξy “ p1 ` n2 ` ξ2q 1

2 .

To take into account the decay of the analytic regularity, we define
the weighted-in-time analytic norm of the solution hT pt, x, vq as

Nλ,T rhT s “ sup
pµ,tqPDλ,T

αT
δ pµ, tq1{2}hT ptq}µ, (2.10)

where

Dλ,T “ tpµ, tq P r0, λq ˆ r0, T s, αT
δ pµ, tq ą 0u (2.11)

and αT
δ pµ, tq “ λ ´ µ ´ aT,δptq. The function aT,δptq is the unique

solution of the following ordinary differential equation
#

9aT,δptq “ ´δe´aT,δptqtp1 ` tq if 0 ď t ď T

aT,δpT q “ 0,
(2.12)

and measures the loss of analytic regularity of the solutions with respect
to the final datum, as in (2.20) below: it is 0 at time T , and it is
maximum at t “ 0. In view of the limit T Ñ `8, we need the
following lemma, proved in the appendix.

Lemma 2.1. For δ ą 0 the unique solution of the backward Cauchy

problem (2.12) is positive and decreasing in time, and verifies

aT,δp0q ď Cpδq,

with Cpδq Ñ 0 when δ goes to zero. The solution a8,δptq with initial

datum

a8,δp0q “ lim
TÑ`8

aT,δp0q

is positive in r0,`8q and

lim
tÑ`8

a8,δptq “ 0.

As a consequence, given λ ą 0, we can choose δ sufficiently small such

that there exist µ P p0, λq for which for any T ą 0, r0, µsˆr0, T s Ă Dλ,T .

We define Bλ,T the space of function hpt, x, vq, defined for t P r0, T s,
with Nλ,T rhs ă `8, and Bλ,8 as the space of functions hpt, x, vq with
t P r0,`8q such that Nλ,8rhs ă `8, where Nλ,8rhs is defined in the
region Dλ,8 “ tpµ, tq P r0, λq ˆ r0,`8q, α8

δ pµ, tq ą 0u with α8
δ pµ, tq “

λ ´ µ ´ a8,δptq.
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2.1. Estimates for ζT . As we show more accurately in the following
lemma, eq. (2.7) for the field ζT has the structure of a Volterra equa-
tion. In order to invert the term of order one in the equation, we use
the following classical result about the theory of Volterra operators.

Theorem 2.1 ([12], p. 45). Given a Volterra equation of the form

fptq ` j ˚ fptq “ gptq, where

j ˚ fptq “
ż t

0

jpt´ sqfpsq ds

with j P L1pR`q. The resolvent kernel r, i.e. the unique solution of the

equation

r ` j ˚ r “ r,

belongs to L1pR`q if and only if

Lrjspσq ‰ ´1 for ℜσ ě 0,

where

Lrjspσq “
ż `8

0

e´σtjptq dt

is the Laplace transform of K. The solution f is then given by fptq “
gptq ´ r ˚ gptq.

We can now state the inversion lemma. We set

jnptq ” i
n

2
rη1pntq, (2.13)

and

HT
ε ptq “ xhT npT, ntq ´ ε

2

ÿ

k“˘1

ż T

t

ζTk psqxhT n´kps, nt´ ksqknps ´ tq ds.

(2.14)

Lemma 2.2. Let λ ą 0 with }h8}λ ă `8 and }η}λ ă `8. Assume

that

Lrj1spσq ‰ 1, ℜσ ě 0

then

Mλ,T rζT s ď CλMλ,T rHT
ε s.

We notice that the condition on the Laplace transform is fulfilled
also by j´1 since j1 “ j´1.

Proof. Let us define φλptq “ eλpT´tqζT
1

pT ´ tq, Fεptq “ eλpT´tqHT
ε pT ´ tq.

Multiplying by eλt, (2.7) can be rewritten as

φλptq ` λ ˚ φλptq “ Fεptq, (2.15)

for t P r0, T s, where λptq “ ´e´λtj´1ptq. We notice that λ P L1pR`q
and if ℜσ ě 0

Lrλspσq “ ´Lrj´1spσ ` λq ‰ ´1.
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Then, from Theorem (2.1), the resolvent kernel rλ related to λ belongs
to L1pR`q. Convolving with rλ in (2.15), we get

φλptq “ Fεptq ´
ż t

0

rλpt´ sqFεpsq ds.

Taking the absolute values, it holds

Mλ,T rζT s “ sup
tPr0,T s

|φλptq| ď Mλ,T rHT
ε s ` }rλ}L1pR`qMλ,T rHT

ε s

and the thesis follow with Cλ “ 1 ` }rλ}L1pR`q. �

We now state the main estimate of this section.

Proposition 2.1. Let ζT˘1
solution of (2.7) and suppose Nλ,T rhT s ă

`8. Then, under the hypothesis of Lemma (2.2), we have

Mλ,T rζT s ď Cλ}h8}λ ` ε
Cλ

λ2
a
λ ´ a8,δp0q

Mλ,T rζT sNλ,T rhT s. (2.16)

Proof. From Lemma (2.2) we need only to estimate Nλ,T rHT
ε s. Being

hT pT, x, vq “ h8px, vq, from (2.14) we have

eλt|HT
ε ptq| ď }h8}λ

` εMλ,T rζT sNλ,T rhT s
ÿ

k“˘1

ż T

t

e´λps´tq´µ1xn´k,nt´ksy

αT pµ1, sq1{2
ps ´ tq ds,

(2.17)

for any µ1 ă λ ´ aT,δpsq. Then, by choosing µ1 “ 0, and using that
aT,δpsq ď aT,δp0q ă a8,δp0q we get

eλt|HT
ε ptq| ď }h8}λ ` ε

Mλ,T rζT sNλ,T rhT s
pλ ´ a8,δp0qq1{2

ż T

t

e´λps´tqps ´ tq ds.

�

2.2. Estimates for hT . Now we turn to give a Cauchy-Kovalevskaya
estimate on hT . Due to the loss of analytic regularity in time, it is
crucial to use the weighted-norm introduced in (2.10).

Proposition 2.2. Let hT a solution of (2.4) and assume Mλ,T rζT s ă
`8 then the following estimate holds:

Nλ,T rhT s ď C}h8}λ ` C

δ
Mλ,T rζT s}η}λ ` ε

C

δ
Mλ,T rζT sNλ,T rhT s. (2.18)

Proof. Fixing µ ă λ ´ aT,δptq, from (2.5) we get

eµxn,ξy|xhT npt, ξq| ď }h8}λ ` eµxn,ξy|DT
n pt, ξq| ` eµxn,ξy|ET

n pt, ξq| (2.19)

where

DT
n pt, ξq “ δn,˘1

i

2
n

ż T

t

ζTn psqrη1pξ ´ nsq ds
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and

ET
n pt, ξq ” ε

2

ÿ

k“˘1

ż T

t

ζTk psqxhT n´kps, ξ ´ ksqkpξ ´ nsq ds.

We estimate separately the two terms. As regards En, since

eµxn,ξy ď eµxn´k,ξ´ksyeµxk,ksy,

by the triangular inequality and taking

µpsq “ λ ` µ ´ aT,δpsq
2

,

i.e. the middle point between µ and λ ´ aT,δpsq, we have

eµxn,ξy|ET
n pt, ξq| ď

ÿ

k“˘1

Mλ,T rζT sˆ

ˆ
ż T

t

e´pλ´µqs}hT psq}µpsqe
´pµpsq´µqxn´k,ξ´ksy|ξ ´ ns| ds,

where we have also used that x˘1,˘sy ď C ` s. Noting that

e´pµpsq´µqxn´k,ξ´ksy|ξ ´ ns| ď 2p1 ` sq
λ ´ µ ´ aT,δpsq

,

we get

eµxn,ξy|ET
n pt, ξq| ď C

δ
Mλ,T rζT sNλ,T rhT s

ż T

t

δe´pλ´µqsp1 ` sq
αT pµ, sq3{2

ds. (2.20)

Being λ ´ µ ą aT,δpsq and using the definition of aT,δ in (2.12)

e´pλ´µqsp1 ` sq
αT pµ, sq3{2

ď ´2

δ

d

ds
αT pµ, sq´1{2

and then

eµxn,ξy|Enpt, ξq| ď C

δ
Mλ,T rζT sNλ,T rhT s 1

αT pµ, tq1{2
.

As regards DT
n , for µ ă λ ´ aT,δptq,

eµxn,ξy|DT
n pt, ξq| ď CMλ,T rζT s}η}λ

ż T

t

e´pλ´µqse´pλ´µqxξ´nsy xξ ´ nsy ds

ď C

δ
Mλ,T rζT s}η}λ

ż T

t

δe´aT,δpsqsp1 ` sq
αT pµ, sq ds

where in the last inequality we have used that λ´µ ą λ´µ´aT,δpsq “
αT pµ, sq and also that λ´µ ą aT,δpsq. Computing the integral, we get

eµxn,ξy|DT
n pt, ξq| ď C

δ
Mλ,T rζT s}η}λ ln

´αT pµ, T q
αT pµ, tq

¯
.

We conclude the proof multiplying (2.19) by αT pµ, tq1{2, and taking the
supremum over Dλ,T . �
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2.3. The backward result.

Theorem 2.2. Let h8 P L1pS1 ˆ Rq analytic such that }h8}λ ă `8
with λ ą 0 . Consider η P L1pRq analytic such that }η}λ ă `8.

Moreover, assume

Lrj1spσq ‰ 1, ℜσ ě 0,

with j1 as in (2.13). Then, for small values of ε, it exists a unique

solution hpt, x, vq of (2.2) with Nλ,8rhs ă `8 such that

lim
tÑ`8

}hpt, x, vq ´ h8px, vq}8 “ 0

with exponential rate.

Proof. For every T we get the unique solution hT of (2.4) using the
following iterative procedure. For j ě 0 and 0 ď t ď T let

Bt
phpj`1q,T
n pt, ξq “ δn,˘1n

i

2
ζ pjq,T
n ptqrη1pξ ´ ntq

´ ε
ÿ

k“˘1

k
ζ

pjq,T
k ptq
2

phpj`1q,T
n´k pt, ξ ´ ktqpξ ´ ntq,

(2.21)

where ζ
pjq,T
1 ptq is defined by

ζ
pjq,T
1

ptq “ ph8p1, tq ´ i

2

ż T

t

ζ
pjq,T
1

psqrη1pt ´ sq ds

´ ε

2

ÿ

k“˘1

ż T

t

ζ
pjq,T
k psqphpjq,T

n´k ps, t´ ksqkps ´ tq ds,

where ζ
pjq,T
´1 “ Ę

ζ
pjq,T
1 and with initial step hp0q,T pt, x, vq “ h8px, vq.

Then hpjq,T verifies the same bounds of the a priori estimates in (2.16)
and (2.18):

Mλ,T rζ pjq,T s ď C}h8}λ ` εCMλ,T rζ pjq,T sNλ,T rhpjq,T s
and

Nλ,T rhpj`1q,T s ď C}h8}λ ` CMλ,T rζ pjq,T s
´

}η}λ ` εNλ,T rhpj`1q,T s
¯

ď C}h8}λ ` εCMλ,T rζ pjq,T s
´
Nλ,T rhpjq,T s ` Nλ,T rhpj`1q,T s

¯
,

where we have used (2.16) in the last inequality and where C is a generic
constant depending on λ and δ. Since Nλ,T rhp0q,T s ď C}h8}λ, taking
ε}h8}λ sufficiently small, we get that Mλ,T rζ pjq,T s and Nλ,T rhpj`1q,T s
are uniformly bounded in j ě 0. Then, taking δ1 ą δ in (2.1), the time
derivative of hpjq,T is uniformly bounded in Nλ,T r¨s. Hence it exists
a subsequence hpjkq,T which converge to a function hT P Bλ,T , while

ζ
pjkq,T
˘1

converge to a function ζT˘1
such that Mλ,T rζT s ă `8. Then

hTn pt, ntq “ ζTn ptq for n “ ˘1 and it is a solution of the nonlinear
problem (2.4).
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We now extend hT pt, x, vq “ h8px, vq for t ě T and we consider the
sequence of solutions thT u, with hT P Bλ,8. We can see that hT fulfills
the Cauchy property as a function of T in Bλ1,8 with λ ą λ1 ą aδ,8p0q.
In fact, fixed T ˚, taking T 1 ě T ě T ˚, we have for t ď T

xhT 1

npt, ξq ´ xhT npt, ξq “ δn,˘1n
i

2

ż T

t

´
ζTn psq ´ ζT

1

n psq
¯

rη1pξ ´ nsq ds

´ ε
ÿ

k“˘1

k

ż T

t

´
ζTk psq ´ ζT

1

k psq
¯

2
xhT n´kps, ξ ´ ksqpξ ´ nsq ds

´ ε
ÿ

k“˘1

k

ż T

t

ζT
1

k psq
2

´
xhT n´kps, ξ ´ ksq ´ xhT 1

n´kps, ξ ´ ksq
¯

pξ ´ nsq ds

` δn,˘1n
i

2

ż T 1

T

ζT
1

n psqrη1pξ ´ nsq ds

` ε
ÿ

k“˘1

k

ż T 1

T

ζT
1

k psq
2

xhT 1

n´kps, ξ ´ ksqpξ ´ nsq ds

and an analogous of equation (2.7) holds for ζT ´ ζT
1
. Doing estimates

in the style of (2.16) and (2.18), we get

Mλ1,T rζT 1 ´ζT s ď εCMλ1,T rζT 1 ´ζT s`εCNλ1,8rhT 1 ´hT s`ε C
λ12

e´pλ´λ1qT˚

and

Nλ1,8rhT 1 ´ hT s ď CMλ1,T rζT 1 ´ ζT s ` εCMλ1,T rζT 1 ´ ζT s

` εCNλ1,8rhT 1 ´ hT s ` p1 ` εqC
mint1, λ ´ λ1u3 e

´ pλ´λ1q
2

T˚

.

(2.22)

Hence, using again the smallness of ε, we conclude that

lim
T˚Ñ`8

sup
T 1ěTěT˚

Nλ1,8rhT 1 ´ hT s “ 0.

Being uniformly bounded in Bλ,8, the sequence thT u converge to a
function h P Bλ,8 and, passing to the limit by dominated conver-
gence in the integral formulation, hpt, x, vq is solution of the nonlinear
equation (2.2) in r0,`8q. So, taking sµ ă λ ´ a8,δp0q, we have that
}hpt, x, vq ´ h8px, vq}sµ Ñ 0.
We get the uniqueness of the solutions with a similar procedure. Let
gpt, x, vq and hpt, x, vq be two solutions of (2.2) with the same asymp-
totic datum h8. Proceeding as before, we can prove that they verify
the estimates (2.16) and (2.18). Hence, denoting ζh the electric field
associated to h, we get

max
´
Nλ,8rhs,Mλ,8rζhs

¯
ď C}h8}λ
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and analogously for gpt, x, vq. Estimating Nλ,8rg ´ hs, we obtain the
same estimates as in (2.22) without the rest terms:

A ” max
´
Nλ,8rg ´ hs,Mλ,8rζg ´ ζhs

¯
ď CpεqA.

Using the smallness on ε as before, we have Cpεq ă 1, from which the
uniqueness follows.

We remark that in [9], in the case of the scattering problem for the
Vlasov-Poisson equation, the uniqueness is guaranteed for a wider class
of solutions, not necessarily analytic. �

3. Non-perturbative regime

Using the backward approach for large times it is possible to con-
struct solutions without perturbating around the homogeneous equi-
librium ηpvq, in the style of [9]. The price to pay is that the analytic
estimates hold only in rτ,`8q for τ large enough.

Fixed an analytic asymptotic state ωpx, vq, consider (1.1) and write

fpt, x, vq “ sωpvq ` gpt, x, vq,
where sω is the mean of ωpx, vq with respect to the x variable. Then
hpt, x, vq “ gpt, x` vt, vq verifies the equation

Bth “ tψrhs, sω ` hu
where ψ is defined as in (2.3). For T ě τ , let us consider the following
sequence of problems#

Bth
T “ tψrhT s, sω ` hT u τ ď t ď T,

hT pT, x, vq “ pω ´ sωqpx, vq.
We introduce the weighted norm

Qλ,T rhT s “ sup
pµ,tqPΩλ,T

θT pµ, tq1{2}hT ptq}µ,

with the weight θT pµ, tq “ pλ ´ µ ´ ∆aT psqq, where ∆ “ λ1{a8pτq,
λ1 ă λ and aT psq is defined as in (2.12) putting δ “ 1. Notice now that
∆ is a diverging quantity for sufficiently large τ . Here Ωλ,T “ tpµ, tq P
r0, λq ˆ rτ, T s, θT pµ, tq ą 0} and, as in the previous case, we can give
the analogous definitions for Qλ,8r¨s, θ8 and Ωλ,8.

We define ζTn ptq “ xhT npt, ntq, n “ ˘1, then ζT verifies the following
equation:

ζTn ptq “
ż T

t

ζTn psqjnpt´ sq ds` W T ptq, (3.1)

where we have defined

W T ptq ” pωnpnT q ´ 1

2

ÿ

k“˘1

ż T

t

ζTk psqxhT n´kps, nt ´ ksqknpt´ sq ds
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and

jnptq “ i
n

2
rω1

0pntq. (3.2)

As in (2.8) we denote

Pλ,T rζT s “ sup
tPrτ,T s

eλt|ζT
1

ptq| “ sup
tPrτ,T s

eλt|ζT´1
ptq|.

We can now state the following theorem.

Theorem 3.1. Let ω P L1pS1 ˆ Rq analytic such that }ω}λ ă `8 and

assume that

Lrj1spσq ‰ 1, ℜσ ě 0, (3.3)

with j1 as in (3.2). Then, for sufficiently large τ , it exists a unique

solution hpx, v, tq of

Bth “ tψrhs, sω ` hu if τ ď t ă `8,

with Qλ,8rhs ă `8 such that

lim
tÑ`8

}hpt, x, vq ´ pω ´ sωqpx, vq}8 “ 0

with exponential rate.

Proof of theorem (3.1). The proof goes in the same way of (2.2) but
instead of using the smallness of ε, we can use the size of ∆. Indeed as
in Proposition (2.2) we can estimate hT in rτ, T s where hT verifies the
equation

xhT npt, ξq “ Dnpt, ξq ´
ÿ

k“˘1

ż t

0

k
ζTk psq
2

xhT n´kps, ξ ´ ksqpξ ´ nsq ds

with

Dnpt, ξq “ δn,˘1

i

2
n

ż T

t

ζTn psqĂω1
0pξ ´ nsq ds.

We first treat the case n ‰ ˘1. As in (2.20) and using λ´µ ą ∆aT psq ą
aT psq we have

eµxn,ξy|xhT npt, ξq| ď }ω}λ ` CPλ,T rζT sQλ,T rhT s
ż T

t

e´pλ´µqsp1 ` sq
ΘT pµ, sq3{2

ds

ď }ω}λ ` C
Pλ,T rζT sQλ,T rhT s

∆

ż T

t

∆e´aT psqsp1 ` sq
ΘT pµ, sq3{2

ds

and thus, since

d

dt
ΘT pµ, tq´1{2 “ ´∆

2

e´aT psqsp1 ` sq
ΘT pµ, tq3{2

we get

eµxn,ξy|xhT npt, ξq| ď }ω}λ ` C
Pλ,T rζT sQλ,T rhT s
∆ΘT pµ, sq1{2

. (3.4)
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Now we estimate Dnpt, ξq, n “ ˘1. Take µ ă λ ´ ∆aT ptq, hence
λ ´ µ ą pλ ´ µ ´ ∆aT psqq{2, so we get

eµxn,ξy|Dnpt, ξq| ď CPλ,T rζT s}ω}λ
ż T

t

e´pλ´µqse´pλ´µqxξ´nsy xξ ´ nsy ds

ď CPλ,T rζT s}ω}λ
ż T

t

e´aT psqsp1 ` sq
ΘT pµ, sq ds

ď C
Pλ,T rζT s}ω}λ

∆
ln

´ΘT pµ, T q
ΘT pµ, tq

¯
.

(3.5)

Hence, multiplying by ΘT pµ, tq1{2 in (3.4) and (3.5) we get

Qλ,T rhT s ď C}ω}λ ` C

∆
Pλ,T rζT s}ω}λ ` C

∆
Pλ,T rζT sQλ,T rhT s.

Regarding ζT in (3.1), using (3.3) and (2.1) we have

Pλ,T rζT s ď CλPλ,T rW T s.
We need better estimates than that in (2.17). We get them by splitting
the two modes k “ ˘1 in

ÿ

k“˘1

ż T

t

ζTk psqxhT 1´kps, t´ ksqkpt ´ sq ds “ B1 ` B´1. (3.6)

If k “ ´1, for µ1 ă λ ´ ∆a8pτq “ λ ´ λ1, we get

eλt|B´1| ď Pλ,T rζT s
ż T

t

e´λps´tq Qλ,T rhT s
Θpµ1, sq1{2

e´µ1pt`sqps ´ tq ds

ď Pλ,T rζT sQλ,T rhT s e´2µ1τ

pλ ´ µ1 ´ λ1q1{2

ż T

t

e´λps´tqps ´ tq ds

ď CPλ,T rζT sQλ,T rhT s
?
τ

λ2
e´pλ´λ1qτ ,

where we have taken the infimum on µ1 P r0, λ´λ1s in the last inequality.
In the other case, using that ω´ sω has mean zero in the x variable, we
have

xhT 0ps, t´ sq “
ÿ

k“˘1

ż T

s

ζTk plqxhT ´kpl, t´ s ´ klqkpt ´ sq dl. (3.7)

Replacing (3.7) in (3.6) we obtain

eλt|B1| ď Pλ,T rζT s
ż T

t

e´λps´tqps ´ tq|xhT 0ps, t´ sq| ds

ď CPλ,T rζT sQλ,T rhT s
λ ´ λ1

ż T

t

e´λps´tqps ´ tq2
ż T

s

e´λldl

ď C
Pλ,T rζT sQλ,T rhT s

λ3pλ ´ λ1q e´λτ .
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Hence

Pλ,T rζT s ď }ω}λ ` CPλ,T rζT sQλ,T rhT s
˜?

τ

λ2
e´pλ´λ1qτ ` e´λτPλ,T rζT s

λ3pλ ´ λ1q

¸

and we can reason as in the proof of the main theorem avoiding to use
the smallness of ε. �

Remark 3.1. We notice that in this setting we have obtained an Euler-
ian analog of the scattering result in [9], in the special case of the HMF
model. In [9] Caglioti and Maffei, using the Lagrangian description of
the flow, obtain the damping result for the Vlasov-Poisson equation,
by a fixed point technique, considering an asymptotic state ω with
}ω}λ ă `8 such that

ωpx, vq ď M

p1 ` v2q2

for some M ą 0 and λ ě C
?
M , with C some purely numerical con-

stant. Here we show that such class of final data fulfills condition (3.3),
if λ ą π

?
M . Indeed, taking n “ 1 in (3.1) and multiplying by eλt we

get as in (2.15)

φT
λ ptq ` φT

λ ˚ λptq “ eλpT´tqW T pT ´ tq
with λptq “ ´e´λtj´1ptq and φT

λ ptq “ eλpT´tqζT
1

pT´tq. So it is sufficient
to notice that, since |Ăω0| ď Mπ2, we have

|Lr˘1spσq| ď Mπ2

ż `8

0

e´ℜσte´λtt dt ď π2
M

λ2
ă 1, ℜσ ě 0

hence (2.1) holds.

Remark 3.2. The non-perturbative scattering result in theorem (3.1)
allows the choice of asymptotic states ω within a distance of Op1q from
a given homogenous state ηpvq. This fact poses a significant difference
with respect to the forward perturbative results where, as we show
in Section 4, given an equilibrium ηpvq which verify some stability
properties, it exists an ε0 ą 0 such that every initial data in an analytic
neighborhood of η of Opεq with ε ă ε0 verifies the Landau damping.
Actually, solutions of the backward and forward problems are of a
different type. Indeed, in the case of the attractive HMF model 1,
it is easy to find non-homogeneous BGK stationary solutions ωpx, vq
of the HMF that can be chosen as scattering asymptotic datum for the
HMF, i.e. such that there exists a solution fωpx, v, tq such that

lim
tÑ`8

}fωpt, x, vq ´ ωpx´ vt, vqq}8 “ 0.

1Except this paragraph, the choice of an attractive or repulsive potential is in-
different in this work.
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This solution, fω could never be a Landau Damping solution because
it is not close, in a strong norm, say L1, to its weak asymptotic limit
ηpvq which is given by the average in x of ωpx, vq. Indeed at the same
L1 distance from η there exists a BGK stationary solution of the HMF
model.
We give an example of such BGK solution, which can be constructed
using that any function of the mean-field energy is an equilibrium. In
this example we consider the attractive HMF model with

F rf spt, xq “ Bx

˜ż

S1ˆR

cospx ´ yqfpt, y, vq dy dv
¸

in (1.1) and we choose, for β, ν ą 0 to be fixed,

ωβ,νpx, vq “ e´βHνpx,vq

Z
,

where Hνpx, vq “ v2

2
´ν cosx and Z is the normalizing constant. Using

the simple structure of the potential, we have that ωνpx, vq is a station-
ary solution of the attractive HMF model, provided that the following
compatibility condition is fulfilled:

Ωβpνq ”
ż
ωβ,νpx, vq cosx dx dv “ ν.

By Taylor expansion Ωβpνq “ βν{2` opβνq as ν Ñ 0, while Ωβpνq Ñ 1

if ν Ñ `8. Hence for β ą 2 it exists at least one value sν such that
Ωβpsνq “ sν.
Remark 3.3. In section 2 we have proved exponential damping of so-
lutions of the HMF model in the scattering setting in the perturbative
case, while in this section we prove the result for τ large. These two
sections could have been partially joined by considering as a smallness
parameter ǫ “ e´λτ . However, given the different nature of the prob-
lems faced, we believe it is clearer to derive the two results separately.

4. The Cauchy problem

In this section, instead of fixing an asymptotic condition, we study
the Cauchy problem for equation (1.1), with initial condition at time
zero. We refer to Section 5 for the discussion of the differences and
advantages of the backward approach compared to this. Putting (2.5)
in integral form we get

phnpt, ξq “ phnp0, ξq ` δn,˘1n
i

2

ż t

0

ζnpsqrη1pξ ´ nsq ds

´ ε

2

ÿ

k“˘1

k

ż t

0

ζkpsqphn´kps, ξ ´ ksqpξ ´ nsq ds,
(4.1)
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and taking ξ “ nt for n “ ˘1 in (4.1), we obtain the equation for the
electric field:

ζnptq “ phnp0, ntq ` n
i

2

ż t

0

ζnpsqrη1pnpt´ sqq ds

´ ε

2

ÿ

k“˘1

kn

ż t

0

ζkpsqphn´kps, nt´ ksqpt´ sq ds.
(4.2)

We introduce the weight Aλ,p
n pξq “ eλxn,ξy xn, ξyp and the corresponding

analytic norm of a generic function f as

}f}λ,p “ sup
n,ξ

Aλ,p
n pξq| pfnpξq|.

In the following we take a mean-zero initial datum h0 such that }h0}λ0,p ă
`8, for some λ0 and p to be fixed.

As done before, we want to study the coupled system pζ˘1, hq. For
this purpose, we define the norm of the electric field ζ as

J
p
λ0

rζs “ sup
βpλ,tqą0

eλt xtyp |ζ˘1ptq|. (4.3)

Here

βpλ, tq “ λ0 ´ λ ´ δ arctanptq (4.4)

with δ ă 2λ0{π measures the loss of analytic regularity with respect to
λ0.

We remark that the choice of the arctan function is not mandatory,
contrary to the case in Section 2, in which the regularity decay is more
precisely prescribed by the structure of the estimates.

We define a weighted-in-time norm on h with two terms:

K
3,p`1

λ0,q
rhs “ K

3rhs ` Kp`1

q rhs, (4.5)

where

K
3rhs “ sup

βpλ,tqą0

}hptq}λ,3

and

Kp`1

q rhs “ sup
βpλ,tqą0

βpλ, tq1{2 }hptq}λ,p`1

xtyq .

The occurrence of the last term is in the spirit of the abstract Cauchy-
Kovalevskaya theorem, while the term K3 is due to the treatment of
the two echoes term in the equation for ζ˘1, as we show in Prop. (4.1).

4.1. Estimates for ζ. In the sequel, for γ ą λ0, it is useful to intro-
duce the quantity

jnptq “ i
n

2
rη1pntqeλ0t (4.6)
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and define

Gεptq ” phnp0, ntq ´ ε

2

ÿ

k“˘1

ż t

0

ζkpsqphn´kps, nt´ ksqknpt ´ sq ds. (4.7)

Lemma 4.1. Let ηpvq analytic such that }η1}γ ă `8 with γ ą λ0. If

Lrj1spσq ‰ 1 for ℜσ ě 0

then

J
p
λ0

rζs ď Cpγ, λ0qJp
λ0

rGεs.

Proof. Assume p “ 0 and take λ ą 0 such that βpλ, tq ą 0 then

eλtζ1ptq “
ż t

0

λpt´ sqeλsζ1psq ds` eλtGεptq

with λptq ” e´pλ0´λqtj1ptq. From Theorem (2.1), since λ P L1pR`q for
γ ą λ0 and

Lrλspσq “ Lrj1spσ ` λ0 ´ λq ‰ 1 ℜσ ě 0,

it exists a unique resolvent kernel rλ associated to λ with rλ P L1pR`q.
Doing the convolution with rλ, we get

eλtζptq “
ż t

0

rλpt´ sqeλsGεpsq ds` eλtGεptq.

Taking the absolute value, we obtain

eλt|ζptq| ď p1 ` }rλ}1qJ0

λ0
rGεs, (4.8)

and we get the thesis for p “ 0 taking the supremum over βpλ, tq ą 0.

Let us give the proof in the case p “ 1, which it is not difficult to
extend to the general one.

teλtζptq “
ż t

0

λpt´ sqseλsζpsq ds` Zεptq

with

Zεptq ”
ż t

0

λpt´ sqpt´ sqeλsζpsq ` teλtGεptq.

Using (4.8), we get

J1

λ0
rζs ď Cpγ, λ0q sup

βpλ,tqą0

|Zεptq|

and
|Zεptq| ď Cpγ, λ0qJ0

λ0
rζs ` J1

λ0
rGεs ď Cpγ, λ0qJ1

λ0
rGεs,

using again (4.8). �

Proposition 4.1. In the hypothesis of the previous lemma, let p ě q`3

with q ě 3 fixed. Given hpx, v, tq such that K
3,p`1

λ0,q
rhs ă `8 we have

J
p
λ0

rζs ď C ` εCJ
p
λ0

rζsK3,p`1

λ0,q
rhs.
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Proof. From the previous lemma, we only need to estimate J
p
λ0

rGεs.
Multiplying by eλt xtyp in (4.7) and using xtyp ď C

´
xt ´ syp ` xsyp

¯
we

have
eλt xtyp |Gεrζ1sptq| ď }hp0q}λ0,p ` εpI1 ` I2q

where

I1 “
ż t

0

zλ,ppsqeλpt´sq
´

|ph0ps, t´ sq|pt´ sq ` |ph2ps, t` sq|pt´ sq
¯
ds

ď
ż t

0

zλ,ppsq}hpsq}λ,3
˜

1

xt´ sy2
` 1

xt ` sy2

¸
ds

and

I2 “

ż t

0

zλ,ppsqeλpt´sq xt ´ syp

xsyp

´
|ph0ps, t ´ sq|pt ´ sq ` |ph2ps, t ` sq|pt ` sq

¯

ď

ż t

0

zλ,ppsq}hpsq}λ,p`1

1

xsyp
ds.

Thus we obtain,

I1 ď J
p
λ0

rζsK3rhs
ż t

0

˜
1

xt´ sy2
` 1

xt` sy2

¸
ds ď CJ

p
λ0

rζsK3rhs

while, if p ´ q ě 2,

I2 ď J
p
λ0

rζsKp`1

q rhs
ż t

0

1

xsyp´q
β1{2pλ, sq

ds ď CJ
p
λ0

rζsKp`1

q rhs

and this concludes the proof. �

4.2. Estimates for h. We start by showing how to split the term with
|ξ ´ ns| in (4.1).

Lemma 4.2. Let ξ P R, p P N, n P Z and λ ą 0 then

Aλ,p
n pξq|ξ ´ ns| ď C

˜
A

λ,p`1

n´k pξ ´ ksqAλ,1
1 psq ` A

λ,1
n´kpξ ´ ksqAλ,p`1

1 psq
¸

(4.9)
with k “ ˘1.

Proof. We notice that

|ξ ´ ns| “ |ξ ´ ks ` pk ´ nqs| ď xsy xn´ k, ξ ´ ksy .
Using the triangular inequality

xn, ξy ď xn´ k, ξ ´ ksy ` xk, ksy ,
the fact that´

xn´ k, ξ ´ ksy ` xk, ksy
¯p

ď C
`
xn´ k, ξ ´ ksyp ` xk, ksyp

¯

and k “ ˘1, we get (4.9). �
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We now turn to estimate equation (4.1). As usual, we define

Dnpt, ξq “ δn,˘1n
i

2

ż t

0

ζnpsqrη1pξ ´ nsq ds.

Lemma 4.3. Given ζ˘1ptq, for λ, q ě 0 we have

}hptq}λ,q ď }h0}λ0,q ` }Dptq}λ,q

` ε

ż t

0

zλ,q`1psq}hpsq}λ,1 ` zλ,1psq}hpsq}λ,q`1 ds.
(4.10)

Proof. Multiplying by Aλ,q
n pξq in (4.1) and using (4.9), we get

Aλ,q
n pξq|hnpt, ξq| ď }h0}λ0,q ` Aλ,q

n pξq|Dnpt, ξq|

` ε
ÿ

k“˘1

ż t

0

A
λ,1
1 psq|ζkpsq|Aλ,q`1

n´k pξ ´ ksq|hn´kps, ξ ´ ksq| ds

` ε
ÿ

k“˘1

ż t

0

A
λ,q`1

1 psq|ζkpsq|Aλ,1
n´kpξ ´ ksq|hn´kps, ξ ´ ksq| ds.

Since eλx1,sy x1, syq ď Ceλs xsyq, after taking the supremum over n, ξ we
obtain the thesis. �

Proposition 4.2. Let p ě q ` 3 with q ě 3 fixed. Given ζ˘1 such that

J
p
λ0

rζs ă `8 we have

K
3,p`1

λ0,q
rhs ď C}h0}λ0,p ` CJ

p
λ0

rζs}η1} ` εC
´
1 ` 1

δ

¯
J
p
λ0

rζsK3,p`1

λ0,q
rhs.

Proof. We first estimate the term of order one in (4.1). If m ě p,

Aλ,m
n pξq|Dnpt, ξq| ď CJ

p
λ0

rζs}η1}
ż t

0

e´pγ´λqxξ´nsy xsym´p xξ ´ nsyp ds,

ď CJ
p
λ0

rζs}η1} xtym´p

(4.11)

where we have used that Aλ,q
n pξq ď CAλ,q

n pξ ´ nsqAλ,q
n pnsq and the

hypothesis on η1.
Now, since the norm (4.5) is composed by two parts, we start giving
an estimate of the K3 norm. Using the result in (4.10) we obtain

}hptq}λ,3 ď }hp0q}λ0,p ` }Dptq}λ,3 ` εJ
p
λ0

rζs
ż t

0

K3rhs
xsyp´4

`
Kp`1

q rhs
xsyp´1´q

ds.

Using (4.11), we get

K
3rhs ď }hp0q}λ0,p ` CJ

p
λ0

rζs}η1}γ ` εCJ
p
λ0

rζsK3,p`1

λ0,q
rhs.

Next, we focus on Kp`1

q . Using (4.10) with p ` 1, we get

}hptq}λ,p`1 ď C}hp0q}λ0,p ` }Dptq}λ,p`1 ` εJ
p
λ0

rζspA1 ` A2q.
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where

A1 “
ż t

0

xsy2 }hpsq}λ,1 ds ď C xty3K3rhs, A2 “
ż t

0

}hpsq}λ,p`2

xsyp´1
ds.

For what concern A2 we take

λ1psq “ λ0 ´ δ arctanpsq ´ λ

2

then

}hpsq}λ,p`2 ď }hpsq}λ1,p`1

λ1 ´ λ

and we get the bound

A2 ď C

ż t

0

1

xsyp´q´1

Kp`1

q rhs
β3{2pλ, tq ds ď C

δ

Kp`1

q rhs
β1{2pλ, tq

where we have used that p ě q ` 3 and the fact that the integral is
exactly computable by

d

dt
β´1{2pλ, tq “ δ

2

1

β3{2pλ, tq xty2
.

Then we get, using q ě 3,

βpλ, tq1{2

xtyq εJ
p
λ0

rζspA1 ` A2q ď εJ
p
λ0

rζs
´
CK3rhs ` C

δ
Kp`1

q rhs
¯
. (4.12)

It remains to estimate the term of order one Dnpt, ξq. Using (4.11), we
obtain

βpλ, tq1{2

xtyq }dptq}λ,p`1 ď CJ
p
λ0

rζs}η1}. (4.13)

Collecting the terms in (4.12) and (4.13) we conclude the proof. �

4.3. The forward result.

Theorem 4.1. Let us fix p ě q ` 3 with q ě 3 and consider h0px, vq P
L1pS1ˆRq a mean-zero analytic initial perturbation such that }h0}λ0,p ă
`8 for some λ0 ą 0. Let ηpvq P L1pRq analytic such that }η1}γ ă `8
with λ0 ă γ. Moreover, assume

Lrj1spσq ‰ 1 if ℜσ ě 0,

with j1 as in (4.6). Then it exists a unique solution hpx, v, tq of (2.2)
with initial datum h0 such that K

3,p`1

λ0,q
rhs ă `8 and exist h8 with

}h8}sλ,p ă `8 for sλ ă λ0 ´ δπ{2 such that

lim
tÑ8

}hpx, v, tq ´ h8px, vq}8 “ 0

with exponential rate.
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Proof. The proof is analogous to the first part of Theorem (2.2). By
a standard iterative procedure as in (2.21) and using the smallness of
the parameter ε, we get the existence of the unique solution h in the
class of functions such that K3,p`1

q ă `8. Then the damping property
follows from the estimate

}Bthptq}0,p ď Ce´sλt

with sλ ă λ0 ´ δπ{2. It follows that hptq Ñ h8 with exponential
rate. �

5. Backward vs forward

In the scattering problem, the decay of the analytic regularity, in the
spirit of the abstract Cauchy-Kovalevskaya theorem, is more difficult
to establish (compare the definition of αT pµ, tq in (2.11), (2.12) with
that of βpλ, tq in (4.4)). Despite this fact, the scattering approach is
easier. In particular, the bound on the norm (2.8) guarantees that for
any t ě 0

|ζ˘1ptq| ď ce´λt,

while the bound on the norm (4.3) guarantees an estimate with a time
correction: for any t ě 0 and λ ă λ0 ´ δ arctan t

|ζ˘1ptq| ď ce´λt{xtyp.

More in general, the norm on h in (2.9), (2.10) is simpler than that
in (4.5), in which we have to introduce algebraic weights like xtyq in
order to obtain closed estimates.

This technical issue is mainly due to the different treatment of the
plasma echoes, the resonances which occur in (2.7) and (4.2) when
nt “ ks, i.e. when n “ k “ ˘1, and t “ s. In the a-priori estimate
of ζ˘1 in Proposition 2.1, there are no difficulties and we control the
resonant terms, those with k “ n, in the same way as the non-resonant
ones, those with k “ ´n. In Proposition 4.1, the echoes force us to
introduce the additional term K3 in the norm of h. Note also that, in
(2.2), we perform a more subtle control of the echoes in (3.6), with an
estimate in two time steps, by using (3.7) and the mean zero of ω ´ sω.
In this way, we obtain the backward non-perturbative result of Section
3.

The main reason of this different behavior is that the solution hptq,
with asymptotic datum h8, gains regularity as t increases, thanks to
the damping properties of the free flow, while the solution hptq, with
initial datum h0, loses regularity as t increases. The non-perturbative
result clarifies this point: in some sense for t P rτ,`8q, for large τ , the
evolution is close to the free flow and it is not much affected by the
echoes. In the forward problem, at finite time, despite the pertubative
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setting, the free flow regularizing property has not yet acted, then the
effect of the echoes is more challenging.

These plasma echoes are considered the major technical difficulty in
obtaining global in time estimates for this kind of equations. We believe
that the difference in the echo treatment is the main advantage of the
backward approach. This issue is confirmed by the comparison with
the other works in the literature which deal with the forward problem.
In [10][ eq.s (2.1), (2.2)] an analogous term is introduced to treat the
two modes of the electric field; also in the general case in [5][eq.s (2.12
a/b/c)]the norm is chosen in order to control the so-called reaction and
transport terms of the equation.

Appendix: proof of lemma (2.1)

Here we omit the symbol δ from aT,δ. Since aT ptq is decreasing, we
have, for any st P r0, T s,

aT p0q “ aT pstq ` δ

ż st

0

e´aT psqsp1 ` sq ds ď aT pstq ` δ

ż st

0

e´aT pstqsp1 ` sq ds

ď aT pstq ` δ
1

aT pstq ` δ
1

a2T pstq .

If δ ď 1, the minimum of x`δ{x`δ{x2, for x ą 0, is less then c1δ
1{3 and

is reached in x ă c2δ
1{3. Then, if aT p0q ě maxpc1, c2qδ1{3, the right-

hand side reach the minimum for some t̄, and then aT p0q ď c1δ
1{3. This

implies that aT p0q ď maxpc1, c2qδ1{3.

For any t ă T , aT is uniformly bounded and is increasing in T , so it
converges to a positive function a8ptq. For any time interval in r0,`8q,
by dominated convergence in the integral formulation of (2.12), we get
that a8ptq solves the differential equation with initial datum a8p0q.

Now we prove that limtÑ`8 a8ptq “ 0. First notice that given b ą 0

there exists b0 ą 0 such that the solution of

9a “ ´δe´tap1 ` tq
with initial datum b0 exists for all times and aptq ě b for all time. To
prove this, we choose b0 ą b` δp1{b` 1{b2q and consider the first time
τ such that apτq “ b. Until τ ,

b0 ´ aptq “ δ

ż t

0

e´asp1 ` sq ds ď δ

ˆ
1

b
` 1

b2

˙
.

Then τ “ `8.

Let ap0q be the initial datum of a generic solution aptq. Set

ā “ inftap0q| lim
tÑ`8

aptq ě 0u,
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and let āptq the solution with initial datum ā. It is easy to prove that
āptq Ñ 0, otherwise ā is not the infimum. We conclude the proof by
noticing that a8p0q ď ā, then a8ptq is dominated by āptq which is a
vanishing function.
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