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COMPARISON BETWEEN THE CAUCHY PROBLEM
AND THE SCATTERING PROBLEM FOR THE
LANDAU DAMPING IN THE VLASOV-HMF
EQUATION

DARIO BENEDETTO, EMANUELE CAGLIOTI, AND STEFANO ROSSI

ABSTRACT. We analyze the analytic Landau damping problem for
the Vlasov-HMF equation, by fixing the asymptotic behavior of the
solution. We use a new method for this “scattering problem”, closer
to the one used for the Cauchy problem. In this way we are able
to compare the two results, emphasizing the different influence of
the plasma echoes in the two approaches. In particular, we prove
a non-perturbative result for the scattering problem.

1. INTRODUCTION

In the spatially periodic case, the Vlasov-Poisson equation in the
HMF approximation reads as

Ouf (t,x,0) + 00, f(t, x,v) + F[f](t, 2)0,f (t, x,v) = 0, (1.1)

where
Flf](t,x) = —0, (ng Rcos(x —y) f(t,y,v) dydv) (1.2)

is the mean-field force. Here f(¢,z,v) is the normalized density of
electrons with position x € S! and velocity v € R, in a collisionless
electrically neutral plasma.

This model has been widely studied in the last decades being a handy
reduction of the Vlasov-Poisson equation, in which the singularity of
the kernel is removed by replacing it with a cosine function. It can be
easily implemented numerically to study the features of a long-range
interaction (see [1], [2], [10]). Furthermore, this model is also a useful
testing ground from a mathematical point of view for studying issues
about long-time behavior of solutions. This is the case of the Lan-
dau damping, i.e. the existence of damped solutions near a stationary
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regular state. The damping consists in the existence of w(x,v) such
that
lim (f(t,z,v) —w(x —vt,v)) =0, (1.3)
t—+00
which means that the flow governed by the mean-field force is asymp-
totically free, and f(¢,z,v) converges weakly to the mean of w in the
x variable.

After Landau’s pioneering work of 1946 [14] for the linearized Vlasov
equation, the damping phenomenon for mean-field models has been
extensively studied and understood in the last decades. The first result
for the nonlinear Vlasov-Poisson problem is proved by Caglioti and
Maffei in [9]. They read the problem as a scattering problem for the
flow, by fixing the asymptotic datum w and finding a solution f(t, z,v)
satisfying (1.3). Subsequently, a proof with less restrictive hypotheses
was given in [13].

In [17] Mouhot and Villani, introducing new mathematical tech-
niques, solve the Cauchy problem for the nonlinear Vlasov-Poisson
equation, with analytic and Gevrey initial data, and show the exis-
tence of the asymptotic state w. A substantial analogy exists between
the Landau damping in plasma physics and the inviscid damping for
the two-dimensional Euler equation. In fact in [4] the damping near
the Couette flow has been proved using different technique, this gives
rise to a new simpler proof of the Landau damping result in [5] (see
also the recent result in [11] for a more elementary proof). For what
concern the damping with Sobolev regularity, it has been shown by
Lin and Zeng ([15], [16]) that for very low regularities Landau damp-
ing cannot occur. Although, in the case of the Vlasov-HMF equation
with sufficiently high Sobolev regularity, Faou and Rousset in [10] have
succeeded in proving the damping with a polynomial rate. A Landau
damping result for the full Vlasov-Poisson equation with Sobolev data
is still missing, however Bedrossian in [3] has given a negative answer to
the possibility of a straightforward extension to this setting of Mouhot
and Villani’s work in [17].

The “backward” approach, which provides the solution of the scatter-
ing problem with a given w, and the “forward” approach, which provides
the solution for the Cauchy problem with fo(z,v) = f(0,x,v), are dif-
ferent from many points of view, starting from the technical ones: in
the backward approach, as in [9] and [13] (and also in [6]), using a
Lagrangian point of view, it is proved that the flow is close to the free
one. In this work, instead, in the HMF approximation, we adapt the
forward techniques to the backward problem to make a comparison in
the case of analytic solutions. In particular, we discuss the different
way the two approaches overcome the difficulties due to the presence
of the “echoes”, i.e. resonances at certain times between the Fourier
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modes of the solution. This turns out to imply a simplified structure
of the norms used in the backward approach. Moreover, the backward
technique is unable to identify initial data for which damping occurs,
but works also in a non-perturbative regime, i.e. without requiring the
solution to be a small perturbation of a stationary state.

In addition, as a by-product, we prove the backward nonlinear Lan-
dau damping for the HMF equation, previously unknown. Perhaps,
this Eulerian approach can be applied also in the study of the back-
ward problem for other interesting models.

The work is divided as follows: in Section 2 we prove the Landau
damping in a perturbative regime using the scattering approach. We
give a priori estimates in the time interval [0,7] imposing that the
solution reaches the asymptotic state at time 7. Then we send T to
infinity, obtaining the solution. In Section 3, we reanalyze the problem
in [7,T], with T — +c0 With a more subtle estimate of the echoes
terms, we obtain a non-perturbative existence result for sufficiently
large values of 7. In Section 4 we present a proof of the damping
for the Cauchy problem in order to highlight the differences with the
backward approach, which we deepen in Section 5.

In both approaches, we need to control the loss of analytic regularity
of the solutions. For this reason we use techniques inspired from the
abstract Cauchy-Kovalevskaya theory (see [8]), adapted to this kind of
problems in [7].

2. THE SCATTERING PROBLEM

We consider solutions of (1.1) which are small perturbations of a
spatially homogenous solution 7, i.e.

f(t,z,v) =n(v) +er(t,z,v), (2.1)

and we assume 7 is an analytic function of the velocities. The equation
verified by the perturbation r is

Oyr(t, ,v) + v0,r(t, z,v) + F[r](t,z)0,(n(v) + er(t,z,v)) = 0,
where the operator F is defined in (1.2).

To state the asymptotic behavior as in (1.3), we define h(t,z,v) =
r(t, x + vt,v), which verifies the following equation:

ath = {¢[h]7 n+ Eh}a (2'2)

where 1 is the potential field generated by the perturbation, evaluated
along the free flow

Wb (t, z,v) = JS i cos(x —y + (v —u)t)h(t,y,u) dydu (2.3)



4 D. BENEDETTO, E. CAGLIOTI, AND S. ROSSI

and where {, } is the Poisson bracket.

Recalling (1.3) and (2.1), we study the damping problem by setting
w(z,v) = n(v) + ehy(x,v), i.e. by searching a solution for (2.2) such
that

lim |A(t, z,v) — ho(x,v)]|0 =0

t—+00
where hy, is a mean-zero analytic datum with |hy[y < +00 for some

A > 0.

Firstly, we study the evolution in the time interval [0, T'] considering
the following problem:

{@hT(t, v,0) = {Y[hT],n +eh™} 0<t<T, (2.4)

hY(T, 2,v) = hy(x,v)

Then, we show that, for T — 400, h' converges to a solution h, which
solves the asymptotic problem.

We work in Fourier transform in S7 x R, using the following notation:

1
Y

3 (6) f e gz, v) de dv
S1xR

with n € Z and £ € R. In Fourier space the system is

—~ i ~ T(H) ~
atth(t7 é) = 5n,i1n§<r?(t>n/(£_nt)_€ Z kaT()thk@v f—kt) (f_nt)u
k=1
(2.5)
where 7' is the Fourier transform of 7’ in the velocity and ¢! for n = +1
is the electric field:

CT(t) = T (t,nt). (2.6)

Integrating equation (2.5) between [t,T] and putting £ = nt, we get
an equation for (7:

_ € T ()T (s, nt — ks)kn(s — t)ds. (2.7)

In order to give a priori estimates, it is convenient to consider (¢1,, h')
as a coupled system, where (2.6) is a consequence of the uniqueness.

A key point in Landau damping problems is the decay of the electric
field. To show this we define the norm of the electric field (7 as

My r[¢"] = sup M| ()] = sup e|cT(t)]. (2.8)
te[0,T] te[0,T]
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We also define a norm which quantifies the analyticity of a function
g of the phase space:

lgl = sup e 01g,(€)], (2.9)

where 11 > 0 is a parameter and (n, ) = (1 + n2 + £2)2.

To take into account the decay of the analytic regularity, we define
the weighted-in-time analytic norm of the solution A (¢, z,v) as

Nygr[h"] = sup  of (u,t) 2T ()], (2.10)
(ut)eDx, T
where
Dar = {(p,t) € [0,A) x [0, T, o5 (s, t) > 0} (2.11)

and of (u,t) = X\ — pu — ars(t). The function args(t) is the unique
solution of the following ordinary differential equation

{am(t) — —gears®t(14¢) if 0<t<T (212

aT75(T) = O,

and measures the loss of analytic regularity of the solutions with respect
to the final datum, as in (2.20) below: it is 0 at time 7, and it is
maximum at t = 0. In view of the limit 7" — 400, we need the
following lemma, proved in the appendix.

Lemma 2.1. For 6 > 0 the unique solution of the backward Cauchy
problem (2.12) is positive and decreasing in time, and verifies

CLT,(;(O) < 0(5),

with C(0) — 0 when & goes to zero. The solution ay s(t) with initial
datum

aoo,(;(O) = lim aT,g(O)

T—+00

is positive in [0, +0) and

tlgi-noo aoo’é(t) =0

As a consequence, given X > 0, we can choose ¢ sufficiently small such
that there exist jn € (0, \) for which for any T > 0, [0, u]x[0,T] < Dy r.

We define B, r the space of function h(t,z,v), defined for ¢ € [0, 77,
with Ny r[h] < +o0, and B, » as the space of functions h(t, z, v) with
t € [0, 4+00) such that Ny ,[h] < +o0, where N |h] is defined in the
region Dy o, = {(i,t) € [0, A) x [0, +0), af(u,t) > 0} with o (u,t) =
A—p— aoo,&(t)'
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2.1. Estimates for (7. As we show more accurately in the following
lemma, eq. (2.7) for the field ¢7 has the structure of a Volterra equa-
tion. In order to invert the term of order one in the equation, we use
the following classical result about the theory of Volterra operators.

Theorem 2.1 ([12], p. 45). Given a Volterra equation of the form
f&) + 7= f(t) = g(t), where

jef(t) = j J(t— $)f(s) ds

0
with j € LY(R,). The resolvent kernel r, i.e. the unique solution of the

equation
r+)xr=r,
belongs to L'(R,) if and only if
L[jl(o) # =1 for Ro =0,
where

£l)(o) = f ety dr

is the Laplace transform of K. The solution f is then given by f(t) =
g(t) —rxg(t).

We can now state the inversion lemma. We set

Jnlt) =57 (nt), (2.13)
and
HY(t) = hT (T, nt) — = L(s)hT (s, nt — ks)kn(s —t) ds.
2 k=+1"1
(2.14)

Lemma 2.2. Let A > 0 with |he| ) < +00 and ||n|y < +0. Assume
that

Llj](c)#1, Ro=0
then

Myr[¢"] < CxMyr[HY).

We notice that the condition on the Laplace transform is fulfilled
also by j_; since j; = j_1.

Proof. Let us define ¢, (t) = X0 (T —t), F.(t) = ;T HT (T —1).
Multiplying by e, (2.7) can be rewritten as

OA(E) + x = Oa(t) = FL(2), (2.15)
for t € [0,T], where 7\(t) = —e *j_1(t). We notice that j, € L'(R,)
and if Vo > 0

Ln](o) = =Lj-1](oc + A) # —1.
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Then, from Theorem (2.1), the resolvent kernel r, related to 7, belongs
to L'(R,). Convolving with ry in (2.15), we get
t

oa(t) = F.(t) — f ra(t — s)F.(s) ds.

0
Taking the absolute values, it holds

Myr[¢'] = sup. (oA (t)] < My [HD] + |ra| e Mo [ HY ]
te[0,T
and the thesis follow with C\ = 1 + |ra[ 11 &) O

We now state the main estimate of this section.

Proposition 2.1. Let ({, solution of (2.7) and suppose Ny r[h'] <
+00. Then, under the hypothesis of Lemma (2.2), we have
C\

)\2 )\ — aoo75(0)

M)\7T[CT] < C)\HhooHA + € M)\7T[CT]N)\7T[hT]. (216)

Proof. From Lemma (2.2) we need only to estimate Ny 7[HI]. Being
WY (T, x,v) = hy(x,v), from (2.14) we have

M HL ()] < ol
2 T —)\s t)—p'{n—k,nt—ks)
+€M>\T N)\T J T (s—t)ds,
k=+1 ol (u!, )2
(2.17)

for any ¢/ < A — ars(s). Then, by choosing y/ = 0, and using that
ars(s) < ars(0) < ayps(0) we get

Mo [N AT (7 e
X T (¢ <|h AT ) J A=) (¢ — 4) ds.
e |H, ()] < |[hollx + (A — aws (0N ], € (s—1t)ds

g

2.2. Estimates for h7. Now we turn to give a Cauchy-Kovalevskaya
estimate on hAT. Due to the loss of analytic regularity in time, it is
crucial to use the weighted-norm introduced in (2.10).

Proposition 2.2. Let h' a solution of (2.4) and assume My 7[(T] <
+0o0 then the following estimate holds:

Mot [Nl + e S M 2 [CTINy £ [HT]. (2.18)

C
Nar[h"] < Clhos|s + = 5

J
Proof. Fixing i < A — ars(t), from (2.5) we get
e ORT, (£, €)| < [hools + 9| DIt €)] + &0 BT (,€)

where

(2.19)

T i g T ™
DI(6) = daign | LT (€~ ns)ds
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and
€

R

Z ' Cg<s>ﬁnfk(3,§ — /{ZS)/{Z(f — ns) ds.

k=+1+1
We estimate separately the two terms. As regards F,,, since
eM<"75> < eu(n—k,f—ks>eu<k,ks>’
by the triangular inequality and taking
) = A+ p—ars(s)
2 Y
i.e. the middle point between p and A — ars(s), we have

OB (O] < Y Marl¢T]x

k=%+1

(s

T
[ O (5 — s s
t

where we have also used that (£1, +s) < C' + s. Noting that
2(1+s)
— i —ars(s)’

~

o B -RERD ¢ ol o

we get

Q

T s —(A—p)s
B0 < Sl Nl [ U s (2.0

; . TG 5P
Being A — p > ars(s) and using the definition of ars in (2.12)
e~(A=ms(1 4 ) 2d
<

2d 7 —1/2
ol (u,s)32 5ds” (1, 5)

and then
OB, (1, )] < My 1 [CTINy g [T}
= SN I Gy
As regards DI, for u < X\ — ars(t),

T
MO DT (1,€)| < CMyr[CT ] f om0 OmENS) (£ sy d

t

o . T 5e*aT,6(S)S(1 + S)
< S0l || s

where in the last inequality we have used that A\—p > A—p—ars(s) =
a®(p, s) and also that A — > ars(s). Computing the integral, we get
C a’(p,T)
w1 DT (¢ < —-M T 1 (7’>
S | n( 7€)| 5 )\7T[§ ]HUH/\ n OzT(,u,t)
We conclude the proof multiplying (2.19) by a (11, )2, and taking the
supremum over D . U

ds
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2.3. The backward result.

Theorem 2.2. Let hy, € LY(S* x R) analytic such that |hy|x < +o0
with A > 0 . Consider n € LY(R) analytic such that |n|y < +oo.
Moreover, assume

L{ji](o) #1, Ro =0
with j1 as in (2.13). Then, for small values of e, it exists a unique
solution h(t,z,v) of (2.2) with Nxy[h] < +o0 such that

lim |A(t, z,v) — ho(x,v)]|0 =0

t—+00

with exponential rate.

Proof. For every T' we get the unique solution h” of (2.4) using the
following iterative procedure. For j > 0 and 0 <t < T let

GV (L€) = 6, Hnic“)vT(t)"'(s — nt)

9 (2.21)
—e Y kA2 WFEDT (¢ ¢~ k(e — no)
k=+1
)T 4y
where (}”7" (t) is defined by
O () = 1t——fg 7t —s)ds
Z kj) T h(] (s, t—ks)k(s —t)ds,
k +1 7t
where C )T C(j)’ and with initial step AT (¢, z,v) = heo (2, v).
Then AT verifies the same bounds of the a priori estimates in (2.16)

and (2.18).
My 7[CDT] < Cllhos s + C My £ [¢CD TNy £ [RT]
and

Nag[hUDT] < Cllhos | + C My p[¢9T] (HnuA + 5NA,T[h(j+1)vT])

< Clhiel + eCMy[¢D ™Y (Nar [BOT] + N [B0+D7T ),

where we have used (2.16) in the last inequality and where C'is a generic
constant depending on A and §. Since Ny7[hO7T] < C|hy]y, taking
g|ho||x sufficiently small, we get that My 7[¢T] and Ny ,[hU+DT]
are uniformly bounded in j > 0. Then, taking ¢’ > ¢ in (2.1), the time
derivative of )T is uniformly bounded in Ny [-]. Hence it exists
a subsequence hU¥)>T which converge to a function hT € By 7, while

J(_rjf)’T converge to a function (%, such that M, r[¢*] < +o0. Then
hI(t,nt) = (T(t) for n = £1 and it is a solution of the nonlinear

problem (2.4).
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We now extend hT(t,z,v) = hy(x,v) for t = T and we consider the
sequence of solutions {h”}, with h” € B, .. We can see that h” fulfills
the Cauchy property as a function of 7" in By o, with A > X > a5,(0).
In fact, fixed T*, taking 7" > T = T*, we have for t < T

—~ o~ : T N
7 (0,6) = (09) = daany [ (G19) = ¢/ (0) ) = ms) s

2
7 (¢h(s) - ¢

(s))
5 T k(s,& — ks)(§ —ns)ds

—~

—€ Z k JT G (5) (th,k(s,f —ks) — iﬁ'n,k(s,f - ks)) (& —ns)ds

k=+1 Yt 2
T N
+ Op41M—= ,Ff/(s) (€ —ns)ds
2 Jr
+€Z k T/Mﬁ’ k(s, & —ks)(€ —ns)ds
k=+1 T 2

and an analogous of equation (2.7) holds for (7 — ¢”". Doing estimates
in the style of (2.16) and (2.18), we get

/ ! / C — —_\ *
My (¢ =(") < eCMy [ =T+ eC Ny o[0T = ] e e 0T

and
Ny o[h™ = BT < CMy 7[¢" = (") + eCMy 2 [¢T — (7]
(1+¢)C A=N) e

min{l, A — )\’}36

+ ECNX@o[hT/ — hT] +
(2.22)
Hence, using again the smallness of ¢, we conclude that

: T _ 3T
T*lgr}roo T{)s;lgT* Ny w[h h']=0.

Being uniformly bounded in By ., the sequence {h'} converge to a
function h € By, and, passing to the limit by dominated conver-
gence in the integral formulation, h(¢, z,v) is solution of the nonlinear
equation (2.2) in [0,400). So, taking i < A\ — G (0), we have that
Hh(t,l‘, U) - hoo(l" U)Hﬁ — 0.

We get the uniqueness of the solutions with a similar procedure. Let
g(t,z,v) and h(t,x,v) be two solutions of (2.2) with the same asymp-
totic datum hy. Proceeding as before, we can prove that they verify
the estimates (2.16) and (2.18). Hence, denoting ¢, the electric field
associated to h, we get

max(N)\7oo[h], M,\,oo[Ch]) < Clhe |
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and analogously for g(¢,z,v). Estimating Ny ,[g — k], we obtain the
same estimates as in (2.22) without the rest terms:

A= max(N,\,oo[g — h], M\ [C; — Ch]) < C(e)A.

Using the smallness on ¢ as before, we have C'(¢) < 1, from which the
uniqueness follows.

We remark that in [9], in the case of the scattering problem for the
Vlasov-Poisson equation, the uniqueness is guaranteed for a wider class
of solutions, not necessarily analytic. U

3. NON-PERTURBATIVE REGIME

Using the backward approach for large times it is possible to con-
struct solutions without perturbating around the homogeneous equi-
librium 7(v), in the style of [9]. The price to pay is that the analytic
estimates hold only in |7, +00) for 7 large enough.

Fixed an analytic asymptotic state w(z,v), consider (1.1) and write

ft,z,0) = wv) + g(t, z,v),
where @ is the mean of w(z,v) with respect to the x variable. Then
h(t,x,v) = g(t,z + vt,v) verifies the equation
Oth = {w[h’L(D + h'}

where 1 is defined as in (2.3). For T' > 7, let us consider the following
sequence of problems

oht = {Y[pT),o+h"} T<t<T,
(T, x,v) = (w— @) (x,v).
We introduce the weighted norm
Qr[h] = sup 67 (u, )[R (8) ],
(Mvt)GQX,T

with the weight 67 (u,t) = (A — p — Aar(s)), where A = X /ay,(7),
N < X and ar(s) is defined as in (2.12) putting § = 1. Notice now that
A is a diverging quantity for sufficiently large 7. Here Q\r = {(p, 1) €
[0, ) x [7,T],07(u,t) > 0} and, as in the previous case, we can give
the analogous definitions for Q) [ ], 6° and Q) .

We define ¢T'(t) = hT,(t,nt), n = £1, then (T verifies the following
equation:

cI(t) = j CT()jult — ) ds + W (1), (3.1)

where we have defined

W)

B (nT) —% 3 Tg,{(s)ﬁn_k(s,nt — ks)kn(t — s) ds

k=+17t
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and n
Jn(t) = igw’o(nt). (3.2)
As in (2.8) we denote

Pyr[¢T] = sup (¢ (1) = sup e[ ()]
te[r,T] te[r,T]

We can now state the following theorem.

Theorem 3.1. Let w e L*(S! x R) analytic such that |w|y < +o0 and
assume that

Llj](c) #1, Ro =0, (3.3)
with j1 as in (3.2). Then, for sufficiently large T, it exists a unique
solution h(x,v,t) of

oth = {¢[h],0+ h} if T<t<+o0,
with Qxx[h] < 400 such that
lim |A(t,z,v) — (W —@)(x,v)|e =0

t—+00

with exponential rate.

Proof of theorem (3.1). The proof goes in the same way of (2.2) but
instead of using the smallness of £, we can use the size of A. Indeed as
in Proposition (2.2) we can estimate h” in [7,T] where h' verifies the
equation

ﬁn(t&) = Dn(t7 f) B 2 thcg(s> }/Lj\ﬂnfk(svg - kS)(f - nS) ds
k=+1+0

2
with ‘ .
1 T ,.\,,
Dy (t,§) = n,+1§n£ ¢, (s)wy(€ — ns) ds.

We first treat the case n # +1. Asin (2.20) and using A—p > Aar(s) >
ar(s) we have

ds

. Te=0=ms(1 4 )
WO\ ZT (¢ < P T h' J -
€ | n( 7§)| HWHA + C )\,T[C ]Q)“T[ ] ' @T(u’ 5)3/2

Prr[¢T1Qar[hT] JT Ae™r()3(1 + s)

A o (u sz

< |wlr+C

and thus, since

d
L OT ()2 =
p; (. t)

A e 1m()3(1 + 5)
2 OT(p,t)¥?

we get

Py r[¢T]Qxr[h"] .

IZGRY) /,1\1
MOt O < s + O gre =i

(3.4)
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Now we estimate D,(t,£), n = +1. Take p < A — Aarp(t), hence
A—pu>(N=p—Aar(s))/2, so we get

T
MO, (1, €)| < CPr (¢l [ e e O 6~ ns)
t

T —ar(s)s
< 0Pl | Sy
Purl¢wl O (u, T)
A 1n< OT(u,t) )

<C

(3.5)
Hence, multiplying by ©7 (1, )2 in (3.4) and (3.5) we get

C C
Qur[h] < Cloly+ Nt
Regarding ¢T in (3.1), using (3.3) and (2.1) we have
Pyr[¢T] < CaPar[WT].

We need better estimates than that in (2.17). We get them by splitting
the two modes k£ = £1 in

Pyr[¢Mwls +

> Tg,f(s)fﬁl,k(s,t — ks)k(t —s)ds = By + B_,. (3.6)

k=+1vt

If b =—1, for f <X —Aax(T) =X— N, we get

eAt|B | <P [CT] JT ef)\(s—t) Q)\7T[hT] ef,u’(tJrs)(S i f}) ds
SR e

_ ’
e 2u'T

T
< Purl¢ual 5 f e (s — 1) ds

< CPyr[¢ ]Q)\T[hT];{; —(=r,

where we have taken the infimum on p' € [0, A— )] in the last inequality.
In the other case, using that w — i has mean zero in the x variable, we
have

hTo(s,t — s) Z (ORT (It — s — kDE(t — s)dl.  (3.7)
k=t1s
Replacing (3.7) in (3.6) we obtain

T ——~
|By| < PyalcT] f e (5 — )| (s,t — 5| ds

t
KT T T
< CP)\7T[CT] Q))\\,'];[)\/ ] J‘ ef)\(sft) (S _ t)2 J‘ e~ MNdl
t s

Py r[¢T]Qxr[h"] —

RS ETp WYy
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Hence

VT e + e Py r[C"]
e MO\

Pyr[¢T] < Jwlx + CPA,T[CT]QA,T[hT]< e

and we can reason as in the proof of the main theorem avoiding to use
the smallness of ¢. O

Remark 3.1. We notice that in this setting we have obtained an Euler-
ian analog of the scattering result in [9], in the special case of the HMF
model. In [9] Caglioti and Maffei, using the Lagrangian description of
the flow, obtain the damping result for the Vlasov-Poisson equation,
by a fixed point technique, considering an asymptotic state w with
|w|[x < 400 such that

M

w(aj, U) < m

for some M > 0 and A\ = C+v/M, with C' some purely numerical con-
stant. Here we show that such class of final data fulfills condition (3.3),
if \ > /M. Indeed, taking n = 1 in (3.1) and multiplying by e we
get as in (2.15)

Ox () + &3 * (1) = XTOWH(T — 1)

with 75 (t) = —e™j_1(t) and ¢% (t) = T¢I (T—t). So it is sufficient
to notice that, since |WJo| < M2, we have

400

M
|L[741](0)] < Mﬂ'QJ e Rote =My dt < WQﬁ <1, Ro=0
0

hence (2.1) holds.

Remark 3.2. The non-perturbative scattering result in theorem (3.1)
allows the choice of asymptotic states w within a distance of O(1) from
a given homogenous state n(v). This fact poses a significant difference
with respect to the forward perturbative results where, as we show
in Section 4, given an equilibrium 7(v) which verify some stability
properties, it exists an €y > 0 such that every initial data in an analytic
neighborhood of 7 of O(¢g) with € < g¢ verifies the Landau damping.
Actually, solutions of the backward and forward problems are of a
different type. Indeed, in the case of the attractive HMF model !,
it is easy to find non-homogeneous BGK stationary solutions w(z,v)
of the HMF that can be chosen as scattering asymptotic datum for the
HMF, i.e. such that there exists a solution f,(z,v,t) such that

Jm [ fo(t2,0) —w(z = ot 0))s =0

Except this paragraph, the choice of an attractive or repulsive potential is in-
different in this work.



FORWARD VS BACKWARD LANDAU DAMPING 15

This solution, f, could never be a Landau Damping solution because
it is not close, in a strong norm, say L, to its weak asymptotic limit
n(v) which is given by the average in = of w(x,v). Indeed at the same
L, distance from 7 there exists a BGK stationary solution of the HMF
model.

We give an example of such BGK solution, which can be constructed
using that any function of the mean-field energy is an equilibrium. In
this example we consider the attractive HMF model with

FlfI(t ) = 0. (Ll . cos(z —y) f(t,y,v)dy dv)

in (1.1) and we choose, for 5,v > 0 to be fixed,
e*BHV(xyv)
Z Y
where H,(z,v) = % —vcosx and Z is the normalizing constant. Using
the simple structure of the potential, we have that w,(x, v) is a station-

ary solution of the attractive HMF model, provided that the following
compatibility condition is fulfilled:

wap(z,v) =

Qp(v) = fw@,,(a:, v) cosx dx dv = .

By Taylor expansion Qg(v) = fv/2+ o(fv) as v — 0, while Qz(v) — 1
if v - +00. Hence for § > 2 it exists at least one value v such that

Os(0) = 7.

Remark 3.3. In section 2 we have proved exponential damping of so-
lutions of the HMF model in the scattering setting in the perturbative
case, while in this section we prove the result for 7 large. These two
sections could have been partially joined by considering as a smallness
parameter € = e~ . However, given the different nature of the prob-
lems faced, we believe it is clearer to derive the two results separately.

4. THE CAUCHY PROBLEM

In this section, instead of fixing an asymptotic condition, we study
the Cauchy problem for equation (1.1), with initial condition at time
zero. We refer to Section 5 for the discussion of the differences and
advantages of the backward approach compared to this. Putting (2.5)
in integral form we get

(1.6 = B (0.€) + Gsan | Guls)T(E — ns) ds
0
. (4.1)
=Y k:fo Co(5)hni(5, € — ks)(€ — ns) ds,

k=+1
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and taking £ = nt for n = £1 in (4.1), we obtain the equation for the
electric field:

Co(t) = hn(0,nt) + n% f Co(s)7 (n(t — s)) ds
: OA (4.2)
Z knL Ck(8)hp_r(s,nt — ks)(t — s) ds.

9
2 k=%+1

We introduce the weight AMP(€) = N (n, €)P and the corresponding
analytic norm of a generic function f as

|71 = sup GG

In the following we take a mean-zero initial datum hg such that | ho|, , <
+00, for some \g and p to be fixed.

As done before, we want to study the coupled system ({41, h). For
this purpose, we define the norm of the electric field ( as

Tolcl = sup (B |¢a(?)]. (4.3)
B(At)>0
Here
BN t) = Ao — A — d arctan(t) (4.4)

with § < 2A\g/m measures the loss of analytic regularity with respect to
Ao-

We remark that the choice of the arctan function is not mandatory,
contrary to the case in Section 2, in which the regularity decay is more
precisely prescribed by the structure of the estimates.

We define a weighted-in-time norm on h with two terms:

K3 ) = KP[R] + K2 (R], (4.5)
where
KP[h] = sup |h(t)|rs
B(At)>0
and

A,p+1

KPRl = su At 12RO p et :
2 h] B()\7t)p>0ﬁ( ) @

The occurrence of the last term is in the spirit of the abstract Cauchy-
Kovalevskaya theorem, while the term K3 is due to the treatment of
the two echoes term in the equation for (1, as we show in Prop. (4.1).

4.1. Estimates for (. In the sequel, for v > )\, it is useful to intro-
duce the quantity

) = igﬁ’(nt)eA“ (4.6)
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and define

Gg(t);ﬁn(o,nt)—% 3 L Go(8) i (s, it — ks)kn(t — s)ds. (4.7)

k=1
Lemma 4.1. Let n(v) analytic such that |n'|, < 400 with v > Xo. If
L[j1](c) #1 for Ro=0

then

Proof. Assume p = 0 and take A\ > 0 such that S(\,t) > 0 then

t

e (1) = fo It — 5)eMCu(s) ds + MG (t)

with 75(t) = e=o=Ntj (). From Theorem (2.1), since 5 € Li(R,) for
v > Ao and

Ln](o) = L)+ =) #1 Ro >0,

it exists a unique resolvent kernel r) associated to 7, with r\ € Li(R, ).
Doing the convolution with r), we get

eMC(t) = f ra(t — 5)eMG.(s) ds + MG (t).

0
Taking the absolute value, we obtain

M) < (L + ) I3, (Gl (4.8)
and we get the thesis for p = 0 taking the supremum over S(\, ) > 0.

Let us give the proof in the case p = 1, which it is not difficult to
extend to the general one.

teM((t) = f It — s)se¢(s) ds + Z.(t)

0
with

Z:(t) = f It —8)(t — 8)e™((s) + teMG.(1).

0
Using (4.8), we get

TolC1 < C(v: ) sup |Z°(2))
B(\t)>0

and

|Z€(t)| < C(’Y’ )\O)Jgo [C] + ‘])\10 [GE] < C(’Y’ )\O)Jio [G6]7
using again (4.8). O
Proposition 4.1. In the hypothesis of the previous lemma, let p = q+3
with ¢ = 3 fived. Given h(x,v,t) such that Kigf;rl[h] < 400 we have

T[] < C+eCT [CIKP [h].

0,9
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Proof. From the previous lemma, we only need to estimate Jfo [G.].
Multiplying by e (t)? in (4.7) and using {(¢)’ < C ((t — )P +{s)" ) we

have

N B |GCGI()] < [7(0) gy + (L1 + 12)
I, = J z)\vp(s)e’\(t_s) <|,fzo(s,t —9)|(t —s) + |,f22(s,t + 9)|(t — s)) ds

< [ anlo)lnts >|w(<t_1 e s>2> :

I = jo Zxp(s)e eAt—s <t<8>f,>p (|h (s,t—s)|(t—s) + |?L2(S,t + s)|(t + 5))

t
1
< | zap(s)|h(s — ds.
[ sl 7

Thus we obtain,

h<&Mﬁm£Q

while, if p — q > 2,

1 N 1
t—s)Y  (t+s)

)@ I8 [ ]

I < J§ [(] ds < CJ3 [C]KE[h]

K J@V%WMQ

and this concludes the proof. O

4.2. Estimates for h. We start by showing how to split the term with
| —ns| in (4.1).

Lemma 4.2. Let £ e R, pe N, ne Z and X\ > 0 then

AP (©)lE = ns| < (A”’“(f ks) Ay (s) + Ay (6 — kS)AT”’“(S)>

(4.9)
with k = +1.

Proof. We notice that
€ = ns| = | — ks + (k — n)s| < (s)<n — k,€ — ).
Using the triangular inequality

n, &) <{n—k,&—ksy+ <k ks),
the fact that

<<n k€ ks) + (K, k;s))p < O((n— k€ — ks)? + (&, k3>p>
and k = £1, we get (4.9). O
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We now turn to estimate equation (4.1). As usual, we define

Du(1,€) = b, j Ca(s)T(€ — ns) ds.

Lemma 4.3. Given (41(t), for \,q = 0 we have
[2()Ixg < [hollxeq + [D(E)]rg

t (4.10)
+ é‘f 2ag+1(8)[A(s)[n1 + 2x1(8)[A(s) ] n.q+1 ds.
0

Proof. Multiplying by AM(€) in (4.1) and using (4.9), we get
AU (t,6)] < [Tolr0.q + AR (E)| Dalt, €
t
be 3 | A EIGEIAE ~ koo, ~ k)l ds
0

k=+1
t
be 3 [ ANTNGEALE ol il € — F)lds.
k=410
Since eXb* (1, s)? < Ce** (s)?) after taking the supremum over n, & we

obtain the thesis. O

Proposition 4.2. Let p = q+ 3 with ¢ = 3 fized. Given (41 such that
Iy, [¢] < 40 we have

, 1
K ) < Clholgy + CI [N |+ 2C (14 5 ) T4 [ 1)

0,9 5 0,9

Proof. We first estimate the term of order one in (4.1). If m > p,

Aé“%&ﬂlzxu5>|<<?Ji[cnnwj;e—“—”@—"®<synp<s——ns¥’d&

< CL [ ™ (4.11)
11

where we have used that AM(&) < CAM(E — ns)AM(ns) and the
hypothesis on 7’.

Now, since the norm (4.5) is composed by two parts, we start giving
an estimate of the 3 norm. Using the result in (4.10) we obtain

‘K] KR

[2(®)xs < 1A0) 2 + [D(@)]x5 + T3 [C] ) s + sy

Using (4.11), we get
K [R] < [h(0)rg + CIR [T 1 + £C TR [T, R

20,9
Next, we focus on Ké’“. Using (4.10) with p + 1, we get

[P xp1 < ClIO)x0p + [DE)xper + 5, [Cl(A1 + Ag).
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where

a= [t < coren, a- [t

For what concern A, we take
Ao — 0 arctan(s) — A

N (s) =
(5 -
then
1h(s) v p1
[(5) g < T2

and we get the bound
Kp+1 h Kerl h
A2<CJ — 1 Hds<€q7[]
0 <5>p e ﬁg/z()\at) 0 61/2()‘7t)

where we have used that p > ¢ + 3 and the fact that the integral is
exactly computable by

d

312 -

o 1
2 B32(\, ) (1)
Then we get, using ¢ > 3,
by 1/2 C
%Eﬁ’o[d(& + Ap) <eJi [C] <CIC3[h] + gKg“[h]). (4.12)

It remains to estimate the term of order one D, (t,¢). Using (4.11), we
obtain

1/2
%M(wlx,pﬂ < CR ). (4.13)

Collecting the terms in (4.12) and (4.13) we conclude the proof. [

4.3. The forward result.

Theorem 4.1. Let us fix p = q + 3 with ¢ = 3 and consider hy(x,v) €
LY(S*xR) a mean-zero analytic initial perturbation such that ||ho |y, , <
+o0 for some A\g > 0. Let n(v) € L*(R) analytic such that |n/|, < +o0
with \g < . Moreover, assume

Ljil(e) #1 if Ro=0

with jy as in (4.6). Then it exists a unique solution h(x,v,t) of (2.2)
with initial datum hg such that Kigf;rl[h] < 40 and exist hy, with
|hesll5,, < 00 for X < Ao — 67/2 such that

lim ||h(z,v,t) — hoo(x,0)]en = 0
t—o0

with exponential rate.
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Proof. The proof is analogous to the first part of Theorem (2.2). By
a standard iterative procedure as in (2.21) and using the smallness of
the parameter ¢, we get the existence of the unique solution A in the
class of functions such that K ;;S,erl < 400. Then the damping property
follows from the estimate

|0(1) o, < Ce™

with A\ < \g — dm/2. It follows that h(t) — h, with exponential
rate. u

5. BACKWARD VS FORWARD

In the scattering problem, the decay of the analytic regularity, in the
spirit of the abstract Cauchy-Kovalevskaya theorem, is more difficult
to establish (compare the definition of a(u,t) in (2.11), (2.12) with
that of S(A,t) in (4.4)). Despite this fact, the scattering approach is
easier. In particular, the bound on the norm (2.8) guarantees that for
any t = 0

[Car(t)] < ce™,
while the bound on the norm (4.3) guarantees an estimate with a time
correction: for any ¢t > 0 and A < \g — d arctant

[Cea(B)] < ce™ ()P

More in general, the norm on A in (2.9), (2.10) is simpler than that
in (4.5), in which we have to introduce algebraic weights like (¢t)? in
order to obtain closed estimates.

This technical issue is mainly due to the different treatment of the
plasma echoes, the resonances which occur in (2.7) and (4.2) when
nt = ks, i.e. when n =k = +1, and t = s. In the a-prior: estimate
of (41 in Proposition 2.1, there are no difficulties and we control the
resonant terms, those with £ = n, in the same way as the non-resonant
ones, those with k& = —n. In Proposition 4.1, the echoes force us to
introduce the additional term K3 in the norm of h. Note also that, in
(2.2), we perform a more subtle control of the echoes in (3.6), with an
estimate in two time steps, by using (3.7) and the mean zero of w — @.
In this way, we obtain the backward non-perturbative result of Section

3.

The main reason of this different behavior is that the solution h(t),
with asymptotic datum ho,, gains regularity as ¢ increases, thanks to
the damping properties of the free flow, while the solution A(t), with
initial datum hg, loses regularity as t increases. The non-perturbative
result clarifies this point: in some sense for ¢ € |7, +00), for large 7, the
evolution is close to the free flow and it is not much affected by the
echoes. In the forward problem, at finite time, despite the pertubative
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setting, the free flow regularizing property has not yet acted, then the
effect of the echoes is more challenging.

These plasma echoes are considered the major technical difficulty in
obtaining global in time estimates for this kind of equations. We believe
that the difference in the echo treatment is the main advantage of the
backward approach. This issue is confirmed by the comparison with
the other works in the literature which deal with the forward problem.
In [10]] eq.s (2.1), (2.2)] an analogous term is introduced to treat the
two modes of the electric field; also in the general case in [5][eq.s (2.12
a/b/c)|the norm is chosen in order to control the so-called reaction and
transport terms of the equation.

APPENDIX: PROOF OF LEMMA (2.1)

Here we omit the symbol ¢ from ars. Since ar(t) is decreasing, we
have, for any t € [0, 77,

ar(0) = O+5f r()3(1 + 5) ds O+5f tM3(1 4+ 5) ds

0 0
<ar(t)+90 ! + 0 !

a — —.

' ar(t) az(t)
If § < 1, the minimum of 2 +6/x+6/22, for z > 0, is less then ¢;6%/3 and
is reached in # < cp0'/3. Then, if ar(0) > max(cy,cy)d"3, the right-
hand side reach the minimum for some ¢, and then az(0) < ¢;6/3. This

implies that ar(0) < max(cy, cp)d"/3.

For any t < T, ar is uniformly bounded and is increasing in T, so it
converges to a positive function a.(t). For any time interval in [0, +0),
by dominated convergence in the integral formulation of (2.12), we get
that aq(t) solves the differential equation with initial datum a(0).

Now we prove that lim;_, o ax(t) = 0. First notice that given b > 0
there exists by > 0 such that the solution of

a=—0e""(1+1)

with initial datum by exists for all times and a(t) > b for all time. To
prove this, we choose by > b+ 6(1/b+ 1/b*) and consider the first time
7 such that a(7) = b. Until 7,

by — a(t) —5J 1+ s)d <5<%+b—12).

Then 7 = +c0.
Let a(0) be the initial datum of a generic solution a(t). Set

a = inf{a(0)| tEIJPoo a(t) = 0},
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and let a(t) the solution with initial datum a. It is easy to prove that
a(t) — 0, otherwise a is not the infimum. We conclude the proof by
noticing that a«(0) < a, then ay(t) is dominated by a(t) which is a
vanishing function.
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