The paper deals with topology-induced containment output feedback for ensuring multi-consensus of homogeneous linear systems evolving over a weakly connected communication digraph. Starting from the extension of a recent characterization of multi-consensus, a decentralized static feedback enforcing multi-consensus is designed based on a suitable network-induced decomposition; a neighborhood state-observer is proposed for completing the design. The results are finally illustrated over a simple simulated example.
Topology-induced containment for general linear systems on weakly connected digraphs / Cacace, Filippo; Mattioni, Mattia; Monaco, Salvatore; Ricciardi Celsi, Lorenzo. - In: AUTOMATICA. - ISSN 0005-1098. - 131:(2021). [10.1016/j.automatica.2021.109734]
Topology-induced containment for general linear systems on weakly connected digraphs
Mattioni, Mattia
;Monaco, Salvatore
;Ricciardi Celsi, Lorenzo
2021
Abstract
The paper deals with topology-induced containment output feedback for ensuring multi-consensus of homogeneous linear systems evolving over a weakly connected communication digraph. Starting from the extension of a recent characterization of multi-consensus, a decentralized static feedback enforcing multi-consensus is designed based on a suitable network-induced decomposition; a neighborhood state-observer is proposed for completing the design. The results are finally illustrated over a simple simulated example.File | Dimensione | Formato | |
---|---|---|---|
Cacace_TopologyInducedContainment_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Contatta l'autore |
Cacace_preprint_TopologyInducedContainment_2021.pdf
accesso aperto
Note: https://doi.org/10.1016/j.automatica.2021.109734
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.