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Abstract

The paper deals with topology-induced containment output feedback for ensuring multi-consensus of homogeneous linear
systems evolving over a weakly connected communication digraph. Starting from the extension of a recent characterization
of multi-consensus, a decentralized static feedback enforcing multi-consensus is designed based on a suitable network-induced
decomposition; a neighbourhood state-observer is proposed for completing the design. The results are finally illustrated over
a simple simulated example.
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1 Introduction

There are several emerging engineering applications that
require the behaviour of single units in a multi-agent
system to be differentiated into small subgroups. For ex-
ample, a formation of a team of robots may require to
be split into smaller subformations in order to simul-
taneously accomplish several tasks. Also, the tempera-
ture of a building may have to be controlled so that the
rooms of different floors have distinct set points (An-
dreasson et al., 2014). This scenario is referred to as
multi-consensus or cluster consensus and is character-
ized by parts of the multi-agent system simultaneously
reaching different consensus states (Yu and Wang, 2010;
Xiao and Wang, 2006).
In addition, multi-consensus is now momentous in brain
science where, thanks to the connectivity and the struc-
ture of the brain, each area could perform specific tasks
(Schnitzler and Gross, 2005), as well as in other natural
systems, e.g., bird flocks or schools of fish splitting into
different subgroups for avoiding predation or for forag-
ing. Examples of multi-consensus are also found in social
systems, e.g., the dynamics of different coexisting opin-
ions or pattern formation in bacteria colonies (Blondel
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et al., 2010; You et al., 2009).
Previous works on multi-consensus have focused on cri-
teria and methods to attain the desired state: in Chen
et al. (2011), two multi-consensus criteria are derived
for multi-agent systems with fixed and switching topol-
ogy; in Lou and Hong (2012), a distributed containment
control approach is devised to target a multiple leader
scenario; in Han et al. (2013), the cluster state is guar-
anteed thanks to the introduction of different inputs to
different clusters; in Qin and Yu (2013), cluster con-
sensus in a directed topology via distributed feedback
control is achieved; in Chen et al. (2015) the second-
order multi-consensus problems for agents with discrete-
time dynamics is studied. In particular, in Monaco and
Ricciardi-Celsi (2019), with reference to the graph topol-
ogy introducted in Caughman and Veerman (2006), it is
shown how a multi-agent system consisting of intercon-
nected integrators induces as many clusters as the num-
ber of reaches of the interconnecting graph plus a series
of additional clusters which can be grouped to form the
common part of all the reaches.

1.1 Statement of contribution

The aim of this work, with respect to the same digraph
topology proposed in Monaco and Ricciardi-Celsi (2019)
and introduced in Caughman and Veerman (2006), is
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• to recast the multi-consensus problem into the static
containment control framework proposed in Li et al.
(2015); Liu et al. (2012); Li et al. (2010);
• to extend the result of multi-consensus to the case of

interconnected linear systems of order n, thus propos-
ing a topology-induced containment control law ;
• to extend the proposed topology-induced containment

control to the output feedback scenario.

1.2 Notation

Given a square matrix M , σ(M) denotes its spectrum.
<(s) denotes the real part of a complex number s. If
<(λ) < 0 ∀λ ∈ σ(M) we say that M is Hurwitz. Given
a set S, |S| denotes its cardinality. We denote by row(),
col() and diag() the, respectively, horizontal, vertical and
diagonal composition of vectors or matrices. 1n ∈ Rn is
a vector with entries 1. In is the unit matrix in Rn. ⊗
denotes the Kronecker product of vectors and matrices.

2 Preliminaries

An unweighted directed graph (or digraph) of order N is
represented by G := (V, E), where V = {v1, . . . , vN} is a
finite nonempty node set and E ⊆ V × V is an edge set
of ordered pairs of nodes, called edges. For two distinct
nodes vi, vj ∈ V, (vi, vj) ∈ E if there is an edge from vi
to vj with vi being the tail and vj being the head of the
edge: hence, vi ∈ N (vj), the set of neighbours of vj . We
write vj  vi if there exists a directed path from node
vj to node vi. For v ∈ V, R(v) ⊂ V denotes the set of
reachable nodes from v, including v itself. A digraph G
contains a spanning tree G′ = (V, E ′) if E ′ ⊆ E does not
contain a directed cycle and there is a root node vroot

such that R(vroot) = V. The Laplacian matrix L of G
has entries Lii = |N (vi)|, Lij = −1 if (vj , vi) ∈ E , and
Lij = 0 otherwise.

We call any subset ρ of V a cell of V. We call a collec-
tion of cells, given by π = {ρ1, ρ2, . . . , ρk}, a partition
of V if ρi ∩ ρj = ∅, whenever i 6= j, and ∪ki=1ρi = V.
The characteristic vector p(ρ) ∈ RN of a cell ρ has en-
tries pi(ρ) = 1 if vi ∈ ρ and 0 otherwise. The character-
istic matrix P (π) of a partition π = {ρi} is defined as
P (π) = rowi(p(ρi)). Finally, N (vi, ρ) denotes the set of
neighbors of vi in the cell ρ.

Definition 2.1 A partition πAE = {ρ1, ρ2, . . . , ρk} is
said to be an almost equitable partition (AEP) of G if,
for each i, j ∈ {1, 2, . . . , k}, with i 6= j, there exists an
integer dij such that |N (v, ρj)| = dij for all v ∈ ρi, where
|N | denotes the cardinality of the set N .

In other words, a partition such that each node in ρi
has the same number of neighbors in ρj , for all i, j with
i 6= j, is an AEP. The property of almost equitability is
equivalent to the invariance of the subspaces generated

by the characteristic vectors of its cells. In particular,
we can give the following equivalent characterization of
an AEP πAE (Monaco and Ricciardi-Celsi, 2019; Mon-
shizadeh et al., 2015)

LP (πAE) = P (πAE)LπAE (1)

where LπAE is the Laplacian of the quotient graph of G
over πAE .

In this paper we consider weakly connected digraphs,
i.e., digraphs whose disoriented version is connected. If
R(vi), the set of reachable nodes from vi, is not strictly
contained in any otherR(vj), thenR(vi) is called a reach
of G and denoted with Ri. The set Pi = {v ∈ Ri :
R(v) ≡ Ri} is called the set of root nodes of Ri. Clearly,
Pi ⊆ Ri. The multiplicity of λ0 = 0 as an eigenvalue
of L is equal to the number µ of distinct reaches of G
(see Theorem 3.2 in Caughman and Veerman (2006)).
Let R1, . . . ,Rµ denote the reaches of G. For each reach
Ri, we define the exclusive part of Ri to be the set
Hi = Ri \ ∪j 6=iRj . We denote by hi = |Hi| the number
of nodes in Hi. Likewise, we define the common part of
Ri to be the cell ρi = Ri \Hi. Let C = ∪µi=1ρi, with car-
dinality δ = |C|, denote the union of the common parts
of all the reaches. According to Proposition 4 and The-
orem 1 of Monaco and Ricciardi-Celsi (2019), C can be

partitioned as C = ∪j=µ+k
j=µ+1Cj , k ≤ δ, j 6= l⇒ Cj∩Cl = ∅,

such that

π∗ = {H1, . . . ,Hµ, Cµ+1, . . . , Cµ+k} (2)

is the coarsest AEP of G, that is, any other AEP is finer
than π∗. The property that π∗ is an AEP can be immedi-
ately verified from (1). Moreover, the computation of π∗

can be carried out by means of a suitable modification
of the algorithm proposed in Section 4 of Zhang et al.
(2013) for the case of µ = 1, as described in Remark 5
of Monaco and Ricciardi-Celsi (2019).

We consider a weakly directed digraph G with µ > 1
where each node of G is an agent with the nth-order
dynamics

ẋi(t) =Axi(t) +Bui(t), i = 1, . . . , N (3)

ui(t) =−K
N∑
j=1

Lijxj(t), (4)

with xi(t) ∈ Rn, ui(t) ∈ Rp and K ∈ Rp×n. The
complete state of the multi-agent system X(t) =

colNi=1(xi(t)) obeys the equation

Ẋ(t) = (IN ⊗A− L⊗ (BK))X(t), (5)

where L is the Laplacian matric of G. In order to investi-
gate the dynamical properties of system (5), we perform
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a reordering of the variables in X(t) by means of the
permutation matrix T defined in Monaco and Ricciardi-
Celsi (2019), Proposition 3,

X̄ = (T ⊗ In)X = colNi=1(x̄i(t)).

With this transformation, (5) becomes

˙̄X(t) =
(
IN ⊗A− L̄ ⊗ (BK)

)
X̄(t) = AX̄X̄(t), (6)

where L̄ = TLT−1,

L̄=


L̄1 . . . 0h1×hµ 0h1×hδ
...

. . .
...

...

0hµ×h1 . . . L̄µ 0hµ×hδ

M1 . . . Mµ M

 , L̄i =

(
Pi 0

Q1i Qi

)
.

(7)

L̄i’s are hi × hi Laplacian matrices associated with the
Hi’s, the Mi’s are δ × hi matrices, and M is a square
matrix of order δ associated with the union of the com-
mon parts of all the digraphs reaches (i.e. with C). Pi is
a square matrix of size |Pi| that refers to the root nodes
Pi in Hi, and Qi a square matrix that refers to the re-
maining (i.e. non root) nodes.

Notice that T> = T−1 since T is a permutation matrix.
T is trivially obtained as the matrix that exchanges the
rows and columns of L to make consecutive the nodes
belonging to the same Hi (and within each Hi the root
and non-root nodes). Clearly, T is not unique since there
are in general many ways to perform this ordering.

Lemma 2.1 The sub-graph associated to Pi is strongly
connected.

Proof. Any two nodes v1, v2 ∈ Pi have by definition
the same reachable set in G. From R(v1) = R(v2) it
followsR(v1)∩Pi = R(v2)∩Pi. Since by definitionR(v)
includes v, v1 is in R(v2) ∩ Pi and vice-versa. 2.
It is also trivial to verify the following properties of the
cellsHi (see also Proposition 3 in Monaco and Ricciardi-
Celsi (2019)).

Lemma 2.2 L̄i has the following properties.

(1) Zero is a simple eigenvalue of L̄i and L̄i1hi = 0,
that is, 1hi is the right eigenvector associated to 0.

(2) The left eigenvector v>hi of L̄i associated to 0 has the

structure v>hi = [v>|Pi|, 0hi−|Pi|], where v>|Pi| is the

left eigenvector of Pi associated to the 0 eigenvalue.
(3) All nonzero eigenvalues of L̄i have positive real

parts.

Proof. The first property follows from the fact that M is
non-singular (see Theorem 3.2 in Caughman and Veer-
man (2006)), and each L̄i has a 0 eigenvalue because
the sum of the rows of L, and therefore of each L̄i, is 0.
Consequently, the algebraic multiplicity of 0 as an eigen-
value of L̄i is exactly 1 and 1hi is the corresponding right
eigenvector. The second property descends trivially from
the structure of L̄i in (7). The last part follows from well
known properties of graphs that admit a spanning tree
(see for example Ren and Beard (2005); Li et al. (2015)).

Lemma 2.3 For any Hi the modified subgraph L̃i ob-
tained by replacing the nodes in Pi with a unique node
vPi admits a spanning tree with vPi as root.

3 Consensus dynamics

From (6)–(7) it follows that the spectrum σ(AX̄) of the
multi-agent system can be decomposed as

σ(AX̄) = σ(Iδ ⊗A−M ⊗ (BK))

∪
(

µ⋃
i=1

σ(Ihi ⊗A− L̄i ⊗ (BK))

)
,

(8)

and the dynamics of the portion X̄i ∈ Rnhi , i = 1, . . . , µ
of X that correspond to the cell Hi is

˙̄Xi =
(
Ihi ⊗A− L̄i ⊗ (BK)

)
X̄i = ĀiX̄i(t). (9)

It is useful to provide a full characterization of the spec-
trum of the type of matrices in the right side of (8).

Theorem 3.1 Let Q ∈ RN×N , σ(Q) = {ci}, A ∈
Rn×n, B and K such that BK ∈ Rn×n, and

Ā = IN ⊗A−Q⊗ (BK).

Then, σ(Ā) =
⋃
i σ(A− ciBK).

Proof. Given ci ∈ σ(Q), let Qui = ciui and (A −
ciBK)xij = λijxij . We prove that λij ∈ σ(Ā) with
right eigenvector ui ⊗ xij .

Ā(ui ⊗ xij) =(IN ⊗A)(ui ⊗ xij)− (Q⊗ (BK))(ui ⊗ xij)
=ui ⊗ (Axij)− (Qui)⊗ (BKxij) =

=ui ⊗ (Axij)− ui ⊗ (ciBKxij)

=ui ⊗ ((A− ciBK)xij) = λij(ui ⊗ xij). 2

When Q is a Laplacian matrix the result of Theorem 3.1
coincides with the consensus conditions reported in sev-
eral works (see for example Isidori (2017), Proposition
5.2, Li et al. (2010) or Lemma 1 of Zhang et al. (2011)).
However, the statement in Theorem 3.1 is slightly more
general and the concise proof reported above, as far as
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we know, original. From Theorem 3.1 it follows immedi-
ately that σ(A) ⊂ σ(Āi) i = 1, . . . , µ. The correspond-
ing eigenvectors are easy to characterize.

Corollary 3.1 The matrices Āi, i = 1, . . . , µ defined in
(9) are such that σ(A) ⊂ σ(Āi). The corresponding right
and left eigenvectors are 1hi ⊗uj and v>hi ⊗ v>j , where uj
and v>j are the right and left eigenvectors of A and v>hi is

the left eigenvector of L̄i associated to λ0 = 0.

Proof. Since λ0 = 0 ∈ σ(L̄i) (Lemma 2.2), σ(A) ⊂ σ(Āi)
follows by setting ci = 0 in Theorem 3.1. The right eigen-
vectors of Āi for the eigenvalues in σ(A) are 1hi ⊗ uj ,
where uj is a right eigenvector of A. Analogously,

(v>hi ⊗ v>j )Āi =(v>hi ⊗ v>j )
(
Ihi ⊗A− L̄i ⊗ (BK)

)
=v>hi ⊗ (v>j A) = λij(v

>
hi ⊗ v>j ). 2

For each cell Hi it is possible to determine a linear com-
bination of the states of the agents in the cell whose
evolution is determined solely by the matrix A, i.e., it
is independent of K. We will show that it is possible to
design K so that this linear combination is the consen-
sus trajectory of nodes in Hi for any i. Let v>hi be the

left eigenvector of L̄i associated to λ0 = 0 and such that
v>hi1hi = 1. v>hi has the structure reported in Lemma
2.2. Define the following vector in Rn

x̄mi =
(
v>hi ⊗ In

)
X̄i. (10)

Lemma 3.1 In each cellHi and for t ≥ 0, x̄mi (t) evolves
according to x̄mi (t) = eAtx̄mi (0) = eAt

(
v>hi ⊗ In

)
X̄i(0).

Proof.

˙̄xmi (t) =
(
v>hi ⊗ In

) (
Ihi ⊗A− L̄i ⊗ (BK)

)
X̄i(t)

=(v>hi ⊗A)X̄i(t) = A(v>hi ⊗ In)X̄i(t) = Ax̄mi (t). 2

Remark 3.1 Notice that, due to the structure of v>hi in
Lemma 2.2, x̄mi depends only on the state of the root
nodes Pi in Hi and it may be represented as x̄mi =(
v>|Pi| ⊗ I|Pi|

)
colj∈Pi(xj).

By resorting to standard results on rooted digraphs it
is now easy to determine K so that the X̄i(t) → 1hi ⊗
x̄mi (t), i.e., each cell Hi reaches consensus on x̄mi (t).

Theorem 3.2 Given a weakly connected digraph G with
µ > 1 and the agent structure in (3)–(4) with (A, B)
controllable, and given arbitrary symmetric and positive
definite matrices Q ∈ Rn×n, R ∈ Rp×p if the control
gain in (5) is chosen as K = cR−1B>P , where P is the
unique positive definite solution of the Riccati equation

0 = A>P + PA+Q− PBR−1B>P, (11)

and

c ≥ 1

2 mini minλij∈σ(L̄i),λij 6=0{<(λij)}
(12)

then in each cell Hi

lim
t→∞

X̄i(t)− 1hi ⊗ x̄mi (t) = 0 (13)

x̄mi (t) =
(
eAt

(
v>|Pi| ⊗ I|Pi|

)
colj∈Pi(xj(0))

)
. (14)

where v>|Pi| is the left eigenvalue of Pi associated to 0 and

such that v>|Pi|1|Pi| = 1.

Proof. Since the sub-graph associated to eachHi admits
a spanning tree it follows from Lemma A.1 in Appendix
A that the disagreement error dynamics is asymptoti-
cally stable if and only if all the matrices Āij = A −
λijBK, where λij ∈ σ(L̄i)\{0} are Hurwitz. The choice
ci ≥ 1/(2 min<(λij)), λij ∈ σ(L̄i) \ {0} guarantees that
this is the case in each cell Hi. To see this it suffices to
show that x∗(PĀij + Ā∗ijP )x < 0 for all x 6= 0.

x∗(PĀij + Ā∗ijP )x

=x∗(A>P + PA− 2c<(λij)PBR
−1B>P )x

≤x∗(A>P + PA− PBR−1B>P )x = −x∗Qx < 0.

Taking the maximum over all the cells Hi yields (12).
The consensus trajectory (14) follows from Lemma 3.1
and Remark 3.1. 2

Remark 3.2 Theorem 3.2 states that it is possible to
choose a uniform K so that in each cellHi the consensus
trajectory depends only on the initial conditions of the
root nodes Pi of the cell and on the matrix A. Notice that
the solution of (11) does not depend on the graph struc-
ture, whereas c does. However, c can be computed in a
fully distributed way by using, for example, the algorithm
in Li et al. (2015).

Remark 3.3 Invoking the results in Jameson and
Kreindler (1973), for single-input agents it is always
possible to prove that convergence to consensus is guar-
anteed by all K = cK̂ with c > 0 verifying (12) and K̂

making A−BK̂ Hurwitz. In this case, an explicit bound
on the convergency rate to the multi-consensus trajec-
tory can be imposed to the network by suitably assigning
σ(A − BK̂). More in general, for multi-input systems

(i.e., ui ∈ Rp) this holds true provided that K̂ satisfies

the following conditions: (i) rank BK̂ = rank K̂; (ii)

the matrix BK̂ has p independent eigenvectors with all
nonpositive eigenvalues.

Finally, we can state a consensus result for the nodes
that belong to the cells Cµ+i.

Theorem 3.3 In the hypotheses of Theorem 3.2, if P
is the solution of (11) and K = c̄R−1B>P , where c̄ =
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max{c, 1/(2 minλ∈σ(M)) <(λ)}, where c is defined in (12)
and M is the matrix in (7), then the trajectories of the
nodes belonging to Cµ+i ⊆ C converge to a trajectory
x̄mµ+i(t) which is a convex combination of the consensus
trajectories x̄mj of the Hj, that is, ∀i = 1, . . . , k:

x̄mµ+i(t) =

µ∑
j=1

αij x̄
m
j (t), αij ∈ [0, 1],

µ∑
j=1

αij = 1. (15)

Proof. Let us denote ζi = |Cµ+i|, i = 1, . . . , k. We as-
sume that, by a suitable choice of X̄, the vector X̄µ+i ∈
Rζin collects the state of the nodes belonging to the
cell Cµ+i and that, within X̄, X̄µ+i+1 follows X̄µ+i. Let

X̄δ(t) = colki=1(X̄µ+i(t)) ∈ Rδn represent the stack of
the state of all the nodes in C in this order, and X̄µ(t) =
colµi=1(x̄mi (t)) ∈ Rµn the stack of the consensus trajec-
tories of the cells Hi. With the aim of expressing in an
equivalent way the thesis (15) with respect to X̄δ(t), let

Ĩζ = diagki=1(1ζi) ∈ Rδ×k, Ĩh = diagµi=1(1hi) ∈ Rh̄×µ.

Finally, let α ∈ Rk×µ be the matrix with entries αij .
With these premises, we can reformulate (15) as

lim
t→∞

X̄δ(t)−
(
Ĩζ ⊗ In

)
(α⊗ In) X̄µ(t)

= lim
t→∞

X̄δ(t)−
(

(Ĩζα)⊗ In
)
X̄µ(t) = 0. (16)

From (6)–(7) the dynamics of X̄δ(t) can be expressed as

˙̄Xδ(t) = (Iδ ⊗A−M ⊗ (BK)) X̄δ(t)

−
µ∑
i=1

(Mi ⊗ (BK)) X̄i(t).
(17)

We can apply the result X̄i(t)→ 1hi⊗x̄mi (t) of Theorem
3.2 to derive the asymptotic dynamics

˙̄Xδ(t) = (Iδ ⊗A−M ⊗ (BK)) X̄δ(t)

−
µ∑
i=1

(Mi ⊗ (BK)) (1hi ⊗ x̄mi (t)) .

that represents the behavior of X̄δ when the cellsHi have
reached consensus. Introducing the consensus mismatch

ε(t) = X̄δ(t)−
(

(Ĩζα)⊗ In
)
X̄µ(t), (18)

our task is to prove ε(t) → 0. Let M̄ = rowµi=1(Mi).
From Lemma 3.1 it descends that ˙̄xmi (t) = Ax̄mi (t) and

we obtain the asymptotic dynamics

ε̇(t) = (Iδ ⊗A−M ⊗ (BK)) X̄δ(t)

−
µ∑
i=1

(Mi ⊗ (BK)) (1hi ⊗ x̄mi (t))

−
(

(Ĩζα)⊗ In
)

(Iµ ⊗A)X̄µ(t)

= (Iδ ⊗A−M ⊗ (BK)) X̄δ(t)

−
(
M̄ ⊗ (BK)

)
(Ĩh ⊗ In)X̄µ(t)

−
(

(Ĩζα)⊗A
)
X̄µ(t).

By replacing X̄δ = ε+
(

(Ĩζα)⊗ In
)
X̄µ,

ε̇(t) = (Iδ ⊗A−M ⊗ (BK)) ε(t) +
(

(Ĩζα)⊗A
)
X̄µ(t)

−
(

(MĨζα)⊗ (BK)
)
X̄µ(t)

−
(
M̄ ⊗ (BK)

)
(Ĩh ⊗ In)X̄µ(t)

−
(

(Ĩζα)⊗A
)
X̄µ(t)

= (Iδ ⊗A−M ⊗ (BK)) ε(t)

−
(

(MĨζα + M̄ Ĩh)⊗ (BK)
)
X̄µ(t).

We notice that Iδ ⊗ A − M ⊗ (BK) is Hurwitz. This
descends from Theorem 3.1, the fact that M is non-
singular and the choice ofK in the hypotheses. The proof
is therefore concluded if we show thatMĨζα+M̄ Ĩh = 0.
To see that this is indeed the case we resort to a result
of Monaco and Ricciardi-Celsi (2019) (Proposition 3),
that states that the µ right eigenvectors of L̄ associated
to the 0 eigenvalue have structure

ui =
(

0 . . . 1>hi 0 . . . (γi)>
)>

(19)

where the vectors γi ∈ Rδ are nonnegative, have com-
ponents in [0, 1] and

∑µ
i=1 γ

i = 1δ. From L̄ui = 0 it
follows that Mi1hi = −Mγi and therefore

M̄ Ĩh = −Mrowµi=1(γi).

Moreover, the components of the γi vectors associated to
the nodes in the same cell Cµ+j are identical (Theorem 1
of Monaco and Ricciardi-Celsi (2019)), and consequently

rowµi=1(γi) can be factorized as rowµi=1(γi) = Ĩζα where
the entries of α are in [0, 1] and the sum of each rows

is 1. It follows that M̄ Ĩh = −MĨζα and the theorem is
proved. 2

From Theorem 3.2 and Theorem 3.3 it immediately de-
scends the following result on the dynamics of the con-
sensus on the whole graph G when K = cR−1B>P .
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Corollary 3.2 The rate of convergence to 0 of the con-
sensus mismatch is given by the smallest real part of the
eigenvalues of the matrices A − λijBK, for all λij ∈
σ(L̄1) ∪ · · · ∪ σ(L̄µ) ∪ σ(M).

Corollary 3.3 In the assumptions of Theorem 3.3 if A
is Hurwitz then: (i) AX̄ defined in (6) is Hurwitz; (ii)
X(t) is exponentially stable.

Proof. Notice that 0 /∈ σ(M) since all the zero eigenval-
ues of L̄ in (7) are contained in one of the L̄i, i = 1, . . . , µ.
The proof follows trivially from the factorization (8) of
the spectrum of AX̄ and from Theorem 3.1 by noticing
that for ci = 0 A is Hurwitz by hypothesis and for ci 6= 0
the matrices Ihi⊗A−L̄i⊗(BK) and Iδ⊗A−M⊗(BK)
are Hurwitz thanks to the choice of K and to the fact
that M is non singular.

Remark 3.4 Theorems 3.2 and 3.3 allow to handle mul-
tiple leader-based coordination of multi-agent systems
rom a multi-consensus perspective. Assuming a network
composed of µ leaders, nodes can be sorted so that the cor-
responding Laplacian gets the form (7) with Pi = 0 ∈ R
for i = 1, . . . , µ. As a consequence, each cellHi possesses
exactly one root (being the leader) and each consensus
trajectory is provided by the one of the corresponding
leader. Accordingly, consensuses over C can be modulated
by suitably assigning the initial condition of each leader
to exploit the corresponding influence.

4 Consensus via output feedback

In many practical applications full state information is
not available for feedback design. It is therefore of inter-
est to extend the consensus state feedback described in
the previous section to the case of output feedback. Du-
ality results for the cooperative observer design has been
presented in previous works, for example Zhang et al.
(2011). Following the same ideas, two main approaches
can be pursued.

• Each agent is endowed with an observer to estimate
its own state from local output information. State es-
timates are exchanged to generate the control input
(neighborhood controller and local observer).
• Each agent runs a consensus estimator from the out-

put information of its neighbours and generate the
control input from this consensus estimate (local con-
troller and neighborhood observer, Li et al. (2010)).

4.1 Neighborhood controller and local observer

The local output information available at each node is

yi(t) = Cxi(t), (20)

where C ∈ Rq×n. In the hypothesis that the pair (C,A)
is observable each agent may estimate its own state via

a plain Luenberger observer so that ‖xi(t)− x̂i(t)‖ → 0
with an arbitrary exponential rate. The control input
(4) is replaced by

ui(t) = −K
N∑
j=1

Lij x̂j(t), (21)

that requires the nodes to exchange their own estimates
rather then the actual states.

Corollary 4.1 If the pair (C,A) is observable, each
agent is endowed with an exponential observer and the
input is generated by the controller (21), then the conclu-
sions of Theorem 3.2 and Theorem 3.3 continue to hold.

The proof follows immediately by noticing that (21) dif-
fers from (4) only by an exponentially vanishing term.

4.2 Local controller and neighborhood observer

The results in this section extend those of Li et al. (2010)
to the case of multiconsensus. Results similar to Li et al.
(2010) have been presented in Zhang et al. (2011) for
the case of single leader following and they can be ex-
tended in a similar way to the case of multiple leader
following. At each agent the output information yi(t) in
(20) is available. Each agent i computes a local consen-
sus variable vi(t) ∈ Rn and exchanges with its neighbors
the information ỹi(t) = yi(t)− Cvi(t). The structure of
the controller at each agent are as follows

ui(t) =−Kvi(t) (22)

v̇i(t) =(A−BK)vi(t)− F
N∑
j=1

Lij(ỹj(t)− ỹi(t)) (23)

ỹi(t) =yi(t)− Cvi(t). (24)

Theorem 4.1 Given a weakly connected digraph G with
µ > 1 and the agent structure (3), (20), (22)–(24), if: (i)
(A,B) controllable and (C,A) observable; (ii)the control
gain K is such that A−BK is Hurwitz and the observer
gain F is chosen as F = cPC>R−1

o where P is the unique
positive definite solution of the Riccati equation

0 = AP + PA> +Qo − PC>R−1
o CP (25)

for an arbitrary choice of the positive definite symmetric
matrices Qo ∈ Rn×n, Ro ∈ Rq×q; (iii) c satisfies (12);
then, ∀j ∈ Hi, vj(t) → 0, and xj(t) → x̄mi (t) where
x̄mi (t) is defined in (14).

Proof. Let X̄i = colj(xj), j ∈ Hi be the stack of the
states of nodes inHi, Vi = colj(vj), and ξi = col(X̄i, Vi).
From (22)–(24) we obtain, with the change of variables
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Fig. 1. Graph used in the example.

θi = col(X̄i, Vi − X̄i), θ̇i = Ãθiθi

Ãθi =

(
Ihi ⊗ (A−BK) −Ihi ⊗ (BK)

0 Ihi ⊗A− L̄i ⊗ (FC)

)
. (26)

Let us introduce the candidate consensus trajectory
θmi = [θm1,i

>, θm2,i
>]> = [xmi

>, (vmi − xmi )>]> ∈ R2n,

θ̇mi (t) =

(
A−BK −BK

0 A

)
θmi (t) = Ami θ

m
i (t). (27)

Due to the triangular structure of Ãθi and Ami we can
proceed as in Lemma A.1 and Theorem 3.2 to obtain
that, with the prescribed choice of F and c, the disagree-
ment dynamics (Vi − X̄i) − 1hi ⊗ θm2,i is asymptotically
stable. Since in (26) the matrix Ihi ⊗ (A−BK) is Hur-
witz, we also have that X̄i → 1hi ⊗ xmi . This in turn
implies Vi → 1hi ⊗ vmi and thus θmi is the consensus tra-
jectory. It is now straightforward to obtain from (27)

ẋmi =(A−BK)xmi −BKθm2,i = Axmi −BKvmi
v̇mi =(A−BK)vmi .

Thus, vmi (t) → 0 and xmi (t) → eAtxmi (0), that is, (14).
2

Notice that Vi does not converge to X̄i, i.e., vi is an
estimate of the disagreement and not an observer of xi.

Theorem 4.2 In the hypotheses of Theorem 4.1, if F =
c̄PC>R−1

o , with c̄ as in Theorem 3.3, then the conclu-
sions of Theorem 3.3 continue to hold.

Proof. The proof is analogue to that of Theorem 3.3 by
considering the extended state ξi = col(X̄i, Vi).

5 Example

5.1 State feedback multiconsensus

The graph in Fig. 1 contains |N | = 8 nodes and the
coarsest equitable partition is πAE = {H1,H2, C3, C4}

where H1 = {1, 2, 3}, H2 = {4, 5}, C3 = {6} and C4 =
{7, 8}. The multiplicity of 0 as an eigenvalue of L is
µ = 2, thus there are two reaches, whose exclusive parts
are H1 and H2 with h1 = 3 and h2 = 2. The common
part contains δ = 3 nodes and it is the union of C3 (with
ζ1 = 1) and C4 (with ζ2 = 2). Thus the number of cells
in the common part is k = 2. At each node is associated
a linear system (3) of size n = 3 with

A =


0 1 0

−1 0 0

0 0 0

 , B =


0

1

1

 , C =
(

1 0 1
)
. (28)

The first two variables compose a harmonic oscillator,
while the third one is an integrator. Clearly, σ(A) =
{±i, 0} thus the system is not asymptotically stable. In
order to reach consensus within each cell we use the
consensus state feedback (4) where K is chosen as in
Theorem 3.2. Solving (11) with Q = I5 and R = 1 yields
R−1B>P = [2.6775 1.6825 2.2361]. Since min{σ(L) \
{0}} = 1, the bound of Theorem 3.3 is c ≥ 1/2. If we
choose c = 1 then K = R−1B>P . The plots reported
in Fig. 2 for a simulation of the distributed system with
t ∈ [0, 25] and random initial conditions clearly show
that consensus is actually reached within each cell of πAE
with 4 consensus trajectories. The consensus trajectories
of H1 and H2 reported in the plots have been computed
as in Theorem 3.2. Since the normalized left eigenvectors
of L associated to 0 are

v>1 =
(

1
2

1
2 0 0 0 0 0 0

)
, v>2 =

(
0 0 0 1

2
1
2 0 0 0

)
the computation of (14) yields (subscripts refer to node
numbers)

x̄m1 (t) =
1

2
eAt (x1(0) + x2(0))

x̄m2 (t) =
1

2
eAt (x4(0) + x5(0)) ,

plotted in Fig. 2. For the consensus trajectories of C3 and
C4 we need the right eigenvectors of L associated to 0,

u1 =
(

1 1 1 0 0 1
2

1
4

1
4

)>
u2 =

(
0 0 0 1 1 1

2
3
4

3
4

)>
Notice that the components of uj corresponding to nodes
in the same Cµ+i are identical. Since γ1 = [ 1

2
1
4

1
4 ]>, γ2 =

[ 1
2

3
4

3
4 ]>, the matrix α has entries (α)11 = (α)12 = 1/2,

(α)21 = 1/4, (α)22 = 3/4. Therefore,(
x̄m3 (t)

x̄m4 (t)

)
= (α⊗ I3)

(
x̄m1 (t)

x̄m2 (t)

)
=

(
1
2 x̄

m
1 (t) + 1

2 x̄
m
2 (t)

1
4 x̄

m
1 (t) + 3

4 x̄
m
2 (t)

)
.

The containment property of the consensus trajectories
of C3 and C4 is clearly highlighted by the plots of Fig. 2.
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Fig. 2. Plot of the state variables of the agents of the network. Dashed lines (of identical type for nodes in the same cell of
πAE) represent single agents while solid lines are the theoretical consensus values.
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Fig. 3. Plot of the state variables of the agents of the network under local controller and neighborhood observer. Dashed lines
represent agents, solid lines are the theoretical consensus.
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Fig. 4. Plot of the components of vi for all the agents.

5.2 Output feedback multiconsensus

We apply the approach described in Section 4.2. The
control gain K = [1.75, 2.25, 0.75] assigns the eigen-
values σ(A − BK) = {−0.5, −1.0, −1.5}. The “ob-
server” gain F is computed as F = c̄PC>R−1

o =
[1.683, 2.678, 2.236]>, where P is the solution of (25)
with Qo = I5 and Ro = 1, and c̄ = 1 as in the state
feedback case. All the remaining parameters are as in
Section 5.1. The plots in Fig. 3 show that the agents in
each cell of the AEP tend to the same consensus trajec-
tories as in the state feedback case. Fig. 4 shows that
vi → 0 for all the agents as predicted.

6 Conclusions

In this paper, the multi-consensus problem is recast into
the static containment control framework proposed in Li

et al. (2015, 2010), with specific reference to the digraph
topology introduced in Caughman and Veerman (2006)
and in Monaco and Ricciardi-Celsi (2019).

In particular, we have extended the results on multi-
consensus to networks of linear systems of order n and
we have shown that this may be equivalently interpreted
as a topology-induced containment control law. The pro-
posed topology-induced containment controller is ex-
tended to the output feedback scenario.
Future work aims at extending those results to the case
of heterogeneous multi-agent context with focus on out-
put consensus. To this end, the concepts of mean-field
and emergent dynamics (as introduced in Panteley and
Loŕıa (2017) for single consensus) may provide an inter-
esting framework for both the understanding of the net-
work induced behavior and, consequently, the design of
decentralized feedback laws.

A A result concerning Theorem 3.2

The following result is used in the proof of Theorem
3.2. The result is already known (see for example Isidori
(2017), Section 5.5, Li et al. (2010) Zhang et al. (2011)),
but we provide an autonomous proof for completeness.

Lemma A.1 Consider a network of N agents (3)–(4)
connected by a graph G that admits a spanning tree. Then,
the disagreement dynamics is asymptotically stable if and
only if all the matrices A− λiBK are Hurwitz where λi
is any non zero eigenvalue of the Laplacian L of G.
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Proof. Let X(t) = coli(xi(t)) ∈ RnN be the state of
the network. Let xm = (v>0 ⊗ In)X as in (10) where
v>0 L = 0 is the left eigenvector of L associated to the
0 eigenvalue and such that v>0 1N = 1, which is unique
because G admits a spanning tree. We shall prove that
xm is the consensus trajectory. Define the disagreement
vector δ(t) = X(t) − 1N ⊗ xm(t). The components of δ
are linearly dependent, since

(v>0 ⊗ In)δ= xm − xm = 0. (A.1)

Further, δ̇ = Āδ, where Ā is defined in (9), because

δ̇ = (In⊗A)δ− (L⊗ (BK))δ = Āδ, where we have used
the property (L ⊗ (BK))X = (L ⊗ (BK))δ that it is

easy to check. Notice that δ̇ = Āδ and Ā is not in general
Hurwitz because σ(A) ⊂ σ(Ā) (Corollary 3.1). Notwith-
standing, asymptotic stability of δ follows from the con-
straint (A.1). In fact, σ(Ā) can be partitioned as in The-
orem 3.1 in the union of the spectra σ(A−λiBK). Since
by hypothesis A−λiBK are Hurwitz except for λ0 = 0,
the proof is concluded by showing that both δ and Āδ
are orthogonal to the eigenspace in RnN corresponding
to σ(A). In fact, the left eigenvectors of Ā associated
to the eigenvalues of A have the form v>0 ⊗ v>j (Corol-

lary 3.1), where v>j A = λAj vj is a left eigenvector of A.

Now, since (v>0 ⊗ v>j )(L⊗ (BK)) = 0, (v>0 ⊗ v>j )δ = 0,

(v>0 ⊗ v>j )Āδ = 0. Thus, the dynamics of δ is influenced
only by σ(A− λiBK) for λi 6= 0 . 2
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