We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge q, so that they have local U(1) and global SU(N) symmetries. We discuss the dependence of the phase diagram, and the nature of the phase transitions, on the charge q of the scalar field and the number N≥2 of components. We argue that the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement and deconfinement of external charge-one particles. The transition lines separating the different phases show different features, which also depend on the number N of components. Therefore, the phase diagram of higher-charge models substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for doubly charged unit-length scalar fields with small and large number of components, i.e., N=2 and N=25.

Higher-charge three-dimensional compact lattice Abelian-Higgs models / Bonati, C.; Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 102:6(2020), p. 062151. [10.1103/PhysRevE.102.062151]

Higher-charge three-dimensional compact lattice Abelian-Higgs models

Pelissetto A.;
2020

Abstract

We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge q, so that they have local U(1) and global SU(N) symmetries. We discuss the dependence of the phase diagram, and the nature of the phase transitions, on the charge q of the scalar field and the number N≥2 of components. We argue that the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement and deconfinement of external charge-one particles. The transition lines separating the different phases show different features, which also depend on the number N of components. Therefore, the phase diagram of higher-charge models substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for doubly charged unit-length scalar fields with small and large number of components, i.e., N=2 and N=25.
2020
Finite-size scaling; critical behavior; three-dimensional gauge theories
01 Pubblicazione su rivista::01a Articolo in rivista
Higher-charge three-dimensional compact lattice Abelian-Higgs models / Bonati, C.; Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 102:6(2020), p. 062151. [10.1103/PhysRevE.102.062151]
File allegati a questo prodotto
File Dimensione Formato  
Pelissetto_Abelian-Higgs-models.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 872.08 kB
Formato Adobe PDF
872.08 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1541273
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact