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We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a
compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge ¢, so that they
have local U(1) and global SU(N) symmetries. We discuss the dependence of the phase diagram, and the nature
of the phase transitions, on the charge g of the scalar field and the number N > 2 of components. We argue that
the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-
invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement and deconfinement
of external charge-one particles. The transition lines separating the different phases show different features,
which also depend on the number N of components. Therefore, the phase diagram of higher-charge models
substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking
of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the
conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for
doubly charged unit-length scalar fields with small and large number of components, i.e., N =2 and N = 25.
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I. INTRODUCTION

Abelian U(1) gauge theories with multicomponent scalar
fields, characterized by a global SU(N) symmetry, emerge as
effective theories in many different physical contexts [1-13].
In particular, they provide an effective description of decon-
fined quantum critical points [14], for example, of the Néel
to valence-bond-solid transition in two-dimensional antifer-
romagnetic SU(2) quantum systems [15-22]. These quantum
models and their classical counterparts have been extensively
studied to understand their different phases and the nature of
their phase transitions. A crucial role is played by topological
aspects, like the Berry phase or the compact/noncompact na-
ture of the gauge fields. For example, the critical behavior of
the lattice CPY~! model, which is the simplest classical model
with U(1) gauge symmetry, depends on the presence/absence
of topological defects [23-27], such as monopoles, both
for N =2 and large values of N. Analogous differences
emerge in the behavior of compact and noncompact lattice
formulations of scalar electrodynamics, i.e., of the multicom-
ponent Abelian-Higgs model; see, e.g., Refs. [12,14-22,27—
45].

In this paper we consider three-dimensional (3D) higher-
charge multicomponent lattice Abelian-Higgs (AH) models.
In these models a compact U(1) gauge field is coupled to an
N-component complex scalar field with integer charge ¢ > 1,
so that they are invariant under local U(1) and global SU(N)
transformations. We study the dependence of the thermody-
namic properties, such as the phase diagram and the nature
of the phase transitions, on the value of the charge g. Our
work extends previous studies of the compact lattice AH
model with a single (N = 1) higher-charge complex scalar
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field [46-52] to multicomponent N > 2 theories. For N = 1
and g > 2, the phase diagram is characterized by two phases,
that are distinguished by the confinement and deconfinement
of single-charge external particles. In this case, the Wilson
loops associated with charge-one particles can be considered
as the order parameter of the transitions, which separate the
confined high-temperature phase, in which Wilson loops obey
the area law, from the deconfined phase. As we shall see, for
N > 2 the confinement and deconfinement of charge-one ex-
ternal sources also plays an important role in determining the
phase diagram. However, there are also new features related
to the breaking of the global SU(N) symmetry.

The phase diagram of the multicomponent compact AH
model with ¢ > 2 also presents notable differences with re-
spect to that of the same model with ¢ = 1. For N > 2 and
g = 1 (this has been explicitly verified in the London limit in
which the scalar fields have unit length) there are only two
phases, that can be characterized by using a gauge-invariant
scalar-field order parameter, while gauge fluctuations do not
play any relevant role [44]. In particular, for N =2 the
transition line between the high- and the low-temperature
phase shows continuous transitions belonging to the CP'—
equivalently, O(3) vector—universality class.

We argue, and present numerical results to support our
arguments, that, forg > 2 and N > 2, the model with compact
gauge fields and unit-length complex scalar fields (London
limit) shows three phases, as sketched in Fig. 1. They are char-
acterized by the behavior of the gauge-invariant correlations
of the scalar fields, which may give rise to the breaking of
the SU(N) global symmetry, and by the confinement and de-
confinement of charge-one external particles, that is signalled
by the large-size behavior of the Wilson loops of the gauge
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FIG. 1. Sketch of the J-« phase diagram of the 3D multicompo-
nent lattice Abelian-Higgs model, in which a compact U(1) gauge
field is coupled to an N-component unit-length complex scalar field
with charge ¢ > 2, for generic N > 2. The Hamiltonian parameter
J is associated with the kinetic gauge-invariant term of the scalar
field, while « represents the inverse gauge coupling. See text for a
description of the various phases and transition lines. We also report
the models emerging in some limiting cases: the CPY~! model for
k = 0, the O(2N) vector model for k — o0, and the lattice Z, gauge
model for J — oo.

fields. As shown in Fig. 1, for small J and any « > 0, there is
a phase in which scalar-field correlations are disordered and
single-charge particles are confined (the Wilson loop obeys
the area law). For large values of J (low-temperature region)
scalar correlations are ordered and the SU(N) symmetry is
broken. Two phases occur here: for small «, single-charge
particles are confined, while they are deconfined for large «.
These phases are separated by three transition lines meeting
at a multicritical point: the DC-OD transition line between the
disordered and confined (DC) and the ordered and deconfined
(OD) phases, the DC-OC line between the disordered and
confined and the ordered and confined (OC) phases, and the
OC-OD line between the ordered and confined and ordered
and deconfined phases.

The three transition lines have different features, since they
are associated with different phases. Moreover, their nature
crucially depends on the number N of components. In par-
ticular, for ¢ = 2 and N = 2, we provide evidence that the
transitions along the DC-OC and OC-OD lines are continu-
ous, belonging to the O(3) vector and Ising universality class,
respectively. The transitions along the DC-OD line are of first
order. For large values of N we expect a different behavior
along the DC-OC and DC-OD lines. The transitions along the
DC-OC line are expected to be first order. As we shall see, our
numerical results for ¢ = 2 and N = 25 provide evidence of
continuous transitions along the DC-OD line.

We note that the different qualitative behavior of the mod-
els with g = 1 and ¢ > 2 is a specific feature of the compact
formulation of the AH theory. Indeed, in the AH model with
noncompact gauge fields a change of the charge of the scalar
field is equivalent to a change of the strength of the gauge
coupling. Therefore, apart from a trivial rescaling of the gauge
coupling, the phase diagram is the same. We also note that the
noncompact formulation of the AH theory should be recov-
ered in the ¢ — oo limit of the compact formulation, with an
appropriate correspondence of the gauge couplings.

The paper is organized as follows. In Sec. II we introduce
the lattice AH model with an N-component scalar field of
generic charge ¢, and define the relevant observables that
characterize the phase transitions. In Sec. III we present the
possible scenarios for the phase diagram and for the nature of
the transition lines. Section IV presents our numerical results
for g = 2: we report FSS analyses [53-56] of the Monte
Carlo (MC) results for N = 2 and N = 25, which allow us to
determine the phase diagram of the model and to characterize
the different transition lines. In Sec. V we discuss the role that
monopoles play in the compact model with ¢ > 2. Finally, we
draw our conclusions in Sec. VI.

II. THE HIGHER-CHARGE LATTICE AH MODEL
A. The model

We consider a three-dimensional lattice AH model, in
which the scalar field z, is a complex N-component unit
vector (Zy - Zx = 1) of integer charge ¢ defined on the sites
x of a cubic lattice. For the gauge fields, we use the compact
Wilson formulation, associating complex variables A, , with
|Ax,.| =1 to each link connecting the site x with the site
x + 1, where (1 = 1,2,3 are unit vectors along the lattice
directions. The Hamiltonian reads

H = JNH. + kH,. (1)

The first term is the interaction term for the scalar fields of
charge ¢:

H.= =Y (2 A, 2erp +cC.), )

X,/

where the sum is over all lattice links of the cubic lattice. The
second term is the usual Wilson Hamiltonian for a U(1) gauge
field:

Hg = Z (Hx,/u) + C-C-), (3)

X, <V

where the sum is over the lattice plaquettes and Il ,, is the
field strength associated with each plaquette,

Hx,/w = )‘x,u )‘x-m,u Ax-&-ﬁ,u )\x,w “)

For any integer g the model is invariant under the global
SU(N) transformations zy — Uz, Ay, — Ax,u, Where U €
SU(N), and under the local U(1) transformations z, —
€170, Dy —> € P79}, where ¢y is a site-dependent
phase. For g > 1 there are additional global symmetries that
only involve the gauge field. If we consider the sites y that
belong to a given plane—for definiteness consider a plane
orthogonal to the direction 1—then the Hamiltonian is invari-
ant under the transformation A, ; — a, ; on all these sites,
where o satisfies a? = 1. The Z, symmetry is the analog
of the center symmetry that is present in pure lattice gauge
theories. Its spontaneous breaking signals the deconfinement
of the single-charge sources. The partition function of the
system reads

7= Z e PH 5)
{z},{r}
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In the following we rescale J and k by B, thus formally setting
B = 1. The numerical FSS analyses reported in Sec. IV will
consider cubic L? lattices with periodic boundary conditions.

B. Observables

To characterize phase transitions associated with the break-
ing of the SU(N) symmetry, we consider correlations of the
gauge-invariant Hermitean operator

1

0 =7z} — ﬁaa’”. (6)
Its two-point correlation function is defined as
G(x —y) = (Tr 0:0y), (N

where the translation invariance of the system has been taken
into account. The susceptibility and the correlation length are
defined as x = ) . G(x) and

£ = 1 G0)—G(p,)
" 4sin’(z/L)  G(p,)

where é(p) =3, eP*G(x) is the Fourier transform of G(x),
and p,, = (27 /L, 0, 0) is the minimum nonzero lattice mo-
mentum.

In our analysis we will consider renormalization-group
(RG) invariant quantities, such as R = &/L and the Binder
parameter

) ®)

5. =) TrQ.0,. ©)

x.y

We also consider the energy-related observables

= _ L) -y
1 1
Eg = —W(Hg), Cg = W(([{;) _ (Hg>2)a (11)

where V = L3. They correspond to the energy density and to
the specific heat associated with the scalar and gauge part of
the Hamiltonian, respectively. The normalizations have been
chosen so that E; and E, converge to 3 in the ordered limit
J, k = 00. We also consider the third cumulant

Hy = (Hy — (Hy))?). (12)

We consider correlation functions of plaquette operators, such
as the connected correlation function

Gr(x —y) = (5eZy)e, e =Re Y Mgy (13)
n<v
Note that ) G, (x) = C,, cf. Eq. (11). Using G, (x) one can
also define a correlation length &, as in Eq. (8).
We finally define a field-strength correlation function. For
definiteness, we select the x direction and define (x, y, z are
the coordinates of each lattice point)

n, = Im (Z n(x,y,zm). (14)
¥z

Then we consider a lattice plane orthogonal to the unit vector
1 and sum over all plaquettes that belong to the plane. When

the gauge fields are close to 1, n, is essentially the sum of
the field strengths on the plane. Then, we define a correlation
function

Gr(x1 —x2) = (nyny, ), 15)

and a correlation length & using Eq. (8). Of course, one can
define an analogous correlation function G (x) by consider-
ing the y or the z direction. In our simulation, we compute
Gr(x) by averaging the correlation function over the three
lattice directions.

III. THE PHASE DIAGRAM
A. Some limiting cases

To understand the phase diagram of the model, it is useful
to consider some particular cases, in which the thermody-
namic behavior is already known. No transitions are expected
along the J = 0 line, while transitions occur along the x = 0,
the J = o0, and the ¥k = o0 lines.

1. Phase diagram along the k = 0 line

For k¥ = 0 the model is equivalent to a lattice formulation
of the CPY~! models with explicit lattice gauge variables [57].
Indeed, for k = 0 the charge ¢ does not play any role: one
can redefine A? — A/, without changing the model. Its phase
diagram has two phases separated by a finite-temperature
transition, where the order parameter is the gauge-invariant
bilinear operator defined in Eq. (6). Some estimates of the
transition point J. have been obtained in Refs. [57,58], and
summarized in Ref. [45]. For N = 2 the transition is continu-
ous, belonging to the O(3) vector universality class (accurate
estimates of the corresponding critical exponents can be found
in Refs. [56,59-63]). For N > 3 itis instead of first order: It is
weak for N = 3 [57] and becomes stronger and stronger with
increasing N [58]. We expect that nature of the transitions to
persist for finite, sufficiently small values of «.

2. Phase diagram along the J = oo line

For J — oo the relevant configurations are those that min-
imize the spin Hamiltonian H, defined in Eq. (2). In the
lowest-energy configuration the fields z, satisfy

2 = M s (16)
Iterating this relation along a plaquette, we obtain
nt, =1 17)

on all plaquettes. A similar result holds for the product of
the fields A{ , along any topologically nontrivial lattice loop.
Therefore, modulo gauge transformations, we can set )\fﬂ, W=
1 on any lattice link. This condition implies

Ay =e€xp (2min/q), n=0,...,q—1. (18)

Thus, in the J/ — oo limit we obtain a lattice Z, gauge theory,
in which the spin variables are associated with the links of
the lattice. These models can be related by duality to g-
state clock spin models [48], characterized by a global Z,
symmetry. For ¢ = 2, the g-state clock model is equivalent
to the standard Ising model and thus we expect an Ising
transition for J = oco. For g = 3, the g-state clock model is
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equivalent to a three-state Potts model, which can only un-
dergo first-order transitions. For larger values of g, we expect
a continuous transition. It belongs to the Ising universality
class for g = 4 [64], and to the 3D XY universality class for
q > 5 [64-66]. It is important to note that, for g = 2, duality
allows us to map the Z, gauge Hamiltonian Eq. (3) onto the
usual nearest-neighbor Ising model. This allows us to predict
Ke = }tln coth B ., where ;. is the inverse temperature of
the Ising model. Using [67] B, = 0.221654626(5), we obtain
k. = 0.380706646(6).

3. Phase diagram along the k = oo line

For k — oo the gauge degrees of freedom are frozen and
we can set Ay, = 1 modulo gauge transformations. In this
limit the model is therefore equivalent to the O(2N) vector
model, which undergoes a continuous transitions for any N.
The same occurs in the standard lattice ¢ = 1 AH models with
compact and noncompact gauge fields; see, e.g., Refs. [44,45].
Estimates of the critical values J, along the x = oo line are
summarized in Ref. [45]. They are obtained from the results
reported in Refs. [58,68—-71]. The RG analysis of the contin-
uum AH field theory, see, e.g., Refs. [44,45], predicts that
gauge modes are a relevant perturbation of the O(2N) fixed
point. Therefore, the DC-OD transitions do not belong to the
O(2N) vector universality class. However, the O(2N) contin-
uous transition for x = oo gives rise to crossover phenomena
for large values of «.

B. Transition lines

On the basis of the above considerations, the most natural
phase diagram is the one reported in Fig. 1. There are three
different phases, characterized by the behavior of the spin and
gauge correlations. The spin order parameter is the bilinear
scalar operator O, defined in Eq. (6), that signals the breaking
of the global SU(N) symmetry. The behavior of the gauge
modes can be understood by looking at the behavior of the
charge-one Wilson loops,

WC:H)‘% (19)

teC

where C is a closed lattice loop. Depending on the phase, the
Wilson loop may or may not obey the area law; correspond-
ingly charge-one sources may be confined or deconfined.

Using these two order parameters, we can characterize
the different phases. For small J and any «, there is a high-
temperature disordered-confined (DC) phase with disordered
scalar-field correlations and confined charge-one particles.
For large J there are two phases, in which spin correlations
are ordered and the global SU(N) symmetry is broken. They
differ in the behavior of the gauge correlations: for small
k charge-one sources are confined, while for large « they
are deconfined. These phases are separated by three distinct
transition lines, that presumably meet at a multicritical point
(MCP) at (k,,, Jp); see Fig. 1.

Note that the value of the charge plays here a crucial role.
For the unit-charge theory, the area law never holds, as soon
as the scalar interaction is turned on, a phenomenon known as
screening. For instance, for J small there is always a contribu-

tion to We of order J7¢, where pc is the length of the Wilson
loop. These contributions are absent for any g > 2.

The above predictions strictly apply to the lattice AH
model in the London limit, in which the modulus |z,| is kept
fixed. However, we believe that the same phases and transi-
tions occur in more general models in which the constraint is
relaxed.

1. The OC-OD transition line

The nature of the OC-OD transition line is expected to be
independent of the number of components, at least for suffi-
ciently large values of J. For ¢ = 2 it is continuous, belonging
to the Ising universality class, for any J > J*, where J* may
coincide with the position of the MCP, i.e., J* > J,,. Along
this transition line the scalar-field fluctuations are expected to
be irrelevant, acting as spectators. For g = 3 the first-order na-
ture of the transition at J/ = oo is expected to persist for finite
values of J. The transition line is expected to be continuous for
g = 4 and to belong to the XY universality class for g > 5.

2. The DC-OC transition line

The transitions along the DC-OC line are expected to have
the same nature as the x = O transition, at least for k¥ < «*,
where «* must satisfy «* < k,,. As we said, we do not expect
the addition of H, for small ¥ to change the nature of the
transition. Therefore, as it occurs for « = 0, we expect gauge
modes to be irrelevant. Thus, the transitions for N = 2 should
be continuous and belong to the O(3) vector universality class,
while they should be of first order for N > 3. As in the CPV~!
model (x = 0), the DC-OC transition line is characterized
by the condensation of the gauge-invariant bilinear operator
Eq. (6).

3. The DC-OD transition line

The nature of the DC-OD transition line is less clear. The
bilinear operator Eq. (6) is again expected to be an appropriate
order parameter. Moreover, as J increases across the transition
line, we also expect deconfinement: the area law ceases to
hold in the OD phase. On the basis of the numerical results
reported in Sec. IV, we shall argue that the behavior along the
DC-OD transition line is controlled by the stable fixed point
of the continuum AH field theory, whose Lagrangian reads

L=|D,®"+r®d+ éu(d)*(b)z + ﬁ F,. (20
where & is a N-component complex scalar field, F,, =
0,A, —0,A,, and D, = 9, +iA,,. This is analogous to what
occurs along the Coulomb-Higgs line of the lattice AH model
with unit-charge spin fields and noncompact gauge fields
[45]. We recall that the RG flow of the AH field theory
predicts that continuous transitions may be observed only for
N > N, [1,72,73], with 4 < N. < 10 in three dimensions
[45,73].

C. Nature of the bicritical point forg =2 and N = 2

As discussed above, the phase diagram of the lattice AH
model with charge g = 2 is characterized by three transition
lines meeting at a MCP, which is usually called bicritical
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point [74-77]. To discuss its nature, it is crucial to identify
the relevant critical modes. Let us focus on the particular
case N = 2, where we expect continuous transitions along the
DC-OC line with an O(3) scalar order parameter, and con-
tinuous transitions along the OC-OD line with an Ising order
parameter. Therefore, the nature of the MCP is determined
by the competition of the effective order parameters appropri-
ate for the continuous DC-OC and OC-QOD transitions. This
hypothesis is quite reasonable, as the two transition lines
are associated with different degrees of freedom: transitions
along the DC-OC line are only driven by the condensation of
bilinear scalar fields, while gauge fields drive the transitions
along the OC-OD line. The nature of the bicritical point can
be investigated within the Landau-Ginzburg-Wilson (LGW)
framework. One considers the most general scalar ®* theory
that is invariant under O(3)®Z, transformations [74-77], i.e.,

1 1
Hiow = 3 [0u9) + @)’ ] + 5 (567 + 19?)

1
+ [t +u, (0 +2uy%0?], 2D

where the three-component field ¢ and the one-component
field ¢ are the coarse-grained O(3) and Z, order parame-
ters. This LGW field theory has been extensively studied in
Refs. [74-77]. In the mean-field approximation [74-76], the
model admits a phase diagram analogous to that sketched in
Fig. 1, with a bicritical point, where two continuous transi-
tion lines (belonging to the Heisenberg and Ising universality
classes) and a first-order transition line meet. The nature of
the MCP depends on the stability of the fixed points of the
RG flow of the ®* theory Eq. (21). A continuous transition is
possible only if the RG flow admits a stable fixed point.

The RG flow of the model was studied in Ref. [77]. Results
were not conclusive for the particular O(3)®Z, LGW theory
considered here, leaving open the possibility of observing
a bicritical continuous transition controlled by the so-called
biconical fixed point. If such fixed point is stable, then the
transitions along the DC-OC and OC-OD lines may be contin-
uous up to the the MCP at (x,,, J;;). In the opposite case, the
continuous transitions along the two lines turn into first-order
transitions before reaching the MCP. It is important to note
that, independently of the stability of the biconical fixed point,
the LGW ®* theory predicts the DC-OD transition line to
be of first order close to the MCP. As « is increased along
this line, the first-order transition should become weaker and
weaker (the latent heat decreases) as the O(4) continuous
transition at k = oo is approached, with substantial crossover
phenomena occurring for large values of k. Note that, a priori
we cannot exclude that the first-order transitions turn into
continuous ones for finite values of «.

IV. NUMERICAL RESULTS FOR THE DOUBLY
CHARGED MODEL

We present a numerical study based on MC simulations of
the doubly charged lattice AH model with N =2 and N =
25. We consider cubic lattices of linear size L with periodic
boundary conditions. As in our previous work [44,57], we
perform microcanonical and Metropolis updates of the scalar
fields. For the gauge field A, , we only perform Metropolis
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FIG. 2. Plot of the specific heats C, and C; as a function of « for
J=08andN = 2.

updates: we propose Ay, — €%A ., choosing ¢ either uni-
formly around 0 (more precisely, in 0 < |¢| < a, where a is
chosen to obtain an average acceptance of 30%) or among
the g — 1 values exp(2min/q), where n is an integer chosen
uniformly among 1, ...,q — 1).

A. Results for N = 2
1. Results along lines at fixed J

To begin with, we investigate the behavior of the model
along lines with fixed J. We present a detailed study at / = 0.8
(we consider sizes 16 < L < 64) and some additional results
for J = 0.6, which, as we shall discuss, is quite close to the
MCP.

Since the value J =0.8 is larger than J.(k =0) =
0.7102(1), we expect, by increasing k, to intersect the OC-OD
line; see Fig. 1. No other transition is expected if the MCP
satisfies J,, < 0.8 (we will verify below that J,, < 0.56). In
Fig. 2 we show the specific heats C, and C; as a function of
k at fixed J = 0.8. We observe a peak for x &~ 0.47, which
confirms the presence of a phase transition. Quantities related
to the observable Q do not show any singular behavior (al-
though they are expected to be nonanalytic at the transition),
confirming that the transition belongs to the OC-OD line. The
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FIG. 3. Scaling plot of the cumulant H,; as a function of X =
(k — k)L, taking v; = 0.629971 and x, = 0.47131. Results for
J=08andN = 2.

Binder parameter U and the correlation length £ do not vary
significantly in the transition region. However, they vary with
the size of the system: U ~ 1.0011, 1.0003, 1.00006 and & =~
28.7, 81, 230 for L = 16, 32, and 64. Note that & increases
faster than L with the size of the box, as expected for an
ordered phase—we expect that & ~ L? asymptotically. To
characterize the critical behavior, as suggested in Ref. [48], we
consider the scaling behavior of the third moment Hgs, which
is expected to scale as

Hy ~ DP[X) + L7%g(X) + L7 g.()],  (22)

where X = (k — «.)L'", @ is the leading correction-to-
scaling exponent and the last term is due to the analytic
background. For an Ising transition [78,79]

vy = 0.629971(4), w; = 0.832(6), (23)

and 3 —3/v; = —1.76212(3). Corrections decay quite
rapidly and the analytic background is negligible. Note that
this is not the case of the specific heats that scale as

Coo ~ L[ fe(X) + L™gc(X) + L gca()].  (24)

In this case, since 3 — 2/v; & —0.17475(2), the analytic term
gives rise to quite slowly decaying scaling corrections.

To verify the Ising nature of the transition, we perform
nonlinear fits to Eq. (22), approximating f3(X) with a poly-
nomial of degree n and neglecting all scaling corrections [we
set g3(X) = g3,(k) = 0]. If we take n = 14, then we obtain
v = 0.630(4) if we use all data and v = 0.623(10) if we only
include data with L > 24. The results are clearly compatible
with the Ising value v; reported in Eq. (23). To obtain a more
precise estimate of k. we have repeated the fits fixing v to the
Ising value reported above. A fit to all data gives

K. = 0.47131(2), 25)

which is in full agreement with the result obtained using only
results with L > 24, k. = 0.47128(3). In Fig. 3 we report the
scaling plot of HiL~>/" versus X, using the Ising value v; and
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FIG. 4. Scaling plot of the ratio &, /L as a function of X = (k —
k)L, taking v; = 0.629971 and k. = 0.47131. Results for J =
0.8and N = 2.

the above-reported estimate of x.. We observe an excellent
agreement.

To further confirm the presence of long-range correlations,
we consider the correlation length &, obtained from the cor-
relation function G, Eq. (13). In Fig. 4 we report &, /L as a
function of X = (k — x. )L/, using v; and the estimate of «,
reported in Eq. (25). We observe a reasonable good scaling,
although not perfect, plausibly because of the corrections due
to the analytic background. We also considered the correlation
length &r, which, however, is very small and consistent with
zero within errors.

We have repeated the analysis for J = 0.6, which is
smaller than J.(k = 0) =0.7102(1) [57] and larger than
Jo(k = 00) = 0.233965(2) [68]. By looking at Fig. 1, we
see that, by increasing J there are two possibilities: the line
can intersect either one or two transition lines. The nature
of the transition lines depends on the position of the MCP.
If J, <J.(k =0) as in Fig. 1, then there are two possi-
bilities: if J > J,, by increasing «, one would first cross
the DC-OC line and then the OC-OD line; in the oppo-
site case, J < J,, one would observe only one transition
on the DC-OD line. However, if J,, > J.(k = 0), then we
should observe a single transition on the DC-OD line. As
we discuss below, we find two transitions, a small-x Heisen-
berg one—therefore on the DC-OC line—and a large-« Ising
one—therefore on the OC-OD line. We can thus conclude that

Jn < 0.6 < J.(xk =0), (26)

confirming the qualitative correctness of Fig. 1.

In Fig. 5 we report the specific heats as a function of «. The
plot of C; indicates the presence of two different transitions,
one at k. ~ 0.50 and a second one at k. ~ 0.54. Note that C,, is
little sensitive to the first transition, which is clearly related to
the condensation of the Q field. The gauge degrees of freedom
are only relevant for the largest-« transition.

To characterize the large-« transition, we consider the
data corresponding to « > 0.53 and fit Hys to LYY f3(X) (we
take a l4th-order polynomial approximation). We find v =
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FIG. 5. Plot of the specific heats C, (top) and C, (bottom) as a
function of « forJ = 0.6 and N = 2.

0.625(7), consistent with the Ising value Eq. (23). If we fix
v to the Ising value, we obtain k., = 0.54472(5). The error
here only represents the statistical uncertainty of the fit. The
systematic error due to the scaling corrections is probably
larger. In Fig. 6 we report the corresponding scaling plot. The
scaling is excellent. Comparing the estimates of k. for J = oo
(k. ~ 0.381), J = 0.8 and J = 0.6, we see that x. decreases
with increasing J, as sketched in Fig. 1. Moreover, we can
derive a lower bound on the position of the MCP, «,, = 0.55.

To clarify the nature of the lower-x transition, we plot U
versus Rg, see Fig. 7, considering only data with x < 0.52.
Data fall onto a single curve, compatible with the universal
curve computed for the Heisenberg universality class [80]. To
determine the critical temperature we have performed fits of
U and R; to

R=f(X), X=(k—k)L", @7
taking v equal to the Heisenberg value [59] vy =
0.71164(10). Using a polynomial approximation for f(X),
we obtain k. = 0.4998(2) (fit of U) and . = 0.4996(1) (fit
of Re). Scaling corrections are apparently of the order of the
statistical errors. We take k. = 0.4997(3) as our final estimate.

| i
-0.50

| | | |
-025 0.0 0.25 0.50
X

-8 |
-1.00 -0.75

FIG. 6. Scaling plot of the cumulant H,; as a function of X =
(k — k)L at the Ising transition taking v; = 0.629971 and k. =
0.54472. Results for / = 0.6 and N = 2. We only include data with
k > 0.53.

2. Results along lines at fixed k

We now study the behavior of the model by performing
simulations at fixed k. We perform simulations at k = 0.4,
0.55, and 1.

Since x.(J = 00) < 0.4 < K, (we estimated «,, = 0.55),
Fig. 1 allows us to predict that, by increasing J we should
first cross the DC-OC line and, subsequently, the OC-OD
line. We focus here on the low-J transition. The estimates
of U and R¢ indicate that it occurs for J =~ 0.65. To verify
that it belongs to the Heisenberg universality class, we plot
U versus Rg and compare the results with the universal curve
computed in the Heisenberg model, see Fig. 8. We observe
an excellent agreement. We have also performed fits of U and
R: to Eq. (27), with J replacing «. We obtain v = 0.721(7)
and 0.720(3) from U and Rg, respectively. We observe tiny
deviations from the Heisenberg value [59] vy = 0.71164(10),

FIG. 7. Scaling plot of U as a function of R;, at the Heisenberg
transition. Results for / = 0.6 and N = 2. We only include data with
k < 0.52. The continuous line is the universal curve U = F(R;) in
the standard Heisenberg model [80].
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FIG. 8. Scaling plot of U as a function of R;. We report data
for N =2, and x = 0.4 and « = 0.55. The continuous line is the
universal curve U = F (R¢) in the standard Heisenberg model [80].

which are most likely due to scaling corrections. If we fix v =
vy, then we obtain J. = 0.65001(4) and J. = 0.649708(3)
from the two fits. Statistical errors are clearly smaller than
the systematic deviations due to the scaling corrections. A
conservative estimate is J. = 0.64985(20).

We have performed a second set of runs for « = 0.55. From
the analysis of the data at fixed J we already know that there
is an Ising transition for J &~ 0.6. We wish now to identify
the Heisenberg transition. We compute U on lattices of size
L = 16 and 24. We observe a rapid crossover from 5/3 to 1
as J varies from 0.54 and 0.58, allowing us to identify the
transition region. The results are plotted versus R in Fig. 8.
They are very close to the Heisenberg line, but not exactly
on it on the scale of the figure: all of them are slightly above
the scaling curve. We confirm therefore that the transition is a
Heisenberg one, but observe that scaling corrections are now
sizable, as expected since we are now close to the MCP. As
before, we have performed fits of U and R; to Eq. (27). We
obtain estimates of v that are consistent with the Heisenberg
value: v = 0.70(1) and 0.72(3) from the analysis of R and
U. If v is fixed to the Heisenberg value, then we estimate
J. =0.56419(7) and J. = 0.56422(12), respectively. Our fi-
nal estimate is J. = 0.5642(2).

Finally, we perform runs for x = 1, which allows us to
study the behavior along the DC-OD line that connects the
MCP with the O(4) point at k = oo. In Fig. 9 we report the
specific heats C; and Cy, that signal a transition for J ~ 0.355,
which is clearly not a Heisenberg one: in the latter case, since
[56] @ < 0, the specific heat does not increase with the size
L. In Fig. 10 we report U versus R¢. The data do not scale
and, moreover, U has a maximum whose height apparently
increases as L increases. This is the signature of a first-order
transition, with a critical temperature J, = 0.354(1). We also
report &, /L versus R, see Fig. 11. Also the energy-related
correlation length increases with L, but with a finite-size
behavior that appears to be unrelated to that of £. Finally,
in Fig. 12 we report &r. At all transition points we have
considered above, & ~ 0. At this transition & is sizable, but
significantly smaller than £ and &,. Moreover, it does not
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FIG. 9. Plot of C, (top) and of C, (bottom) as a function of J.
Results fork = 1 and N = 2.

increase with L, indicating that the modes encoded by this
correlation function are not those that drive the transition.

B. Results for N = 25

We now consider the CP?* model and perform an analy-
sis analogous to the one presented for N = 2. According to
Ref. [58], the compact CP'"? model has a critical transition at
J. = 0.353(2). Since the transition point in the CPY~! model
decreases with increasing N, the CP?* model should have a
transition at J, < 0.35. Therefore, to investigate the behavior
of the model along the OC-OD critical line that connects the
MCP with the Ising transition at J = oo, we have performed
a run at fixed J = 0.4. We find that the specific heat C, has
a clear maximum that increases with L for ¥ ~ 0.40, that we
identify as the critical transition. We analyze the behavior of
the cumulant Hg close to the transition, fitting the data to
L3V f(X), where X = (k — k.)L'/", using v; = 0.629971(4)
[78]. Data scale nicely, see Fig. 13, confirming the Ising nature
of the transition line. We estimate k. = 0.40200(5), where
the error takes into account only the statistical fluctuations of
the fit—the systematic error due to the scaling correction is
probably larger.

We now focus on the DC-OC transition line that connects
the CP?* transition point with the MCP. We perform runs
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FIG. 10. Scaling plot of U as a function of R;. Results for x = 1
and N = 2. The continuous line is the universal curve U = F(R¢) in
the standard Heisenberg model [80].

at k = 0.2 on lattices L = 16, observing strong hysteresis
effects for J &~ 0.339. The transitions on the DC-OC line are
therefore of first order, as the CP2* transition for x = 0.

Finally, we focus on the DC-OD line connecting the MCP
with the O(50) transition point for k = co. We perform runs
for k = 1, which should be well above the MCP. On the basis
of our results for the Ising line—the results at fixed J/ = 0.4—
we expect the MCP to have «,, ~ 0.4-0.5. In Fig. 14 we show
the specific heats as a function of J. The quantity C, has a
well-defined maximum for J ~ (.29, which does not increase
with the size. This is a clear sign of a continuous transition
with o < 0. The specific heat C, instead seems to be loosely
coupled with the transition: it only shows short plateaus for
the values of J at which C, has a maximum. The transition is
clearly related to the condensation of the degrees of freedom
associated with the field z. In Fig. 15 we report U versus
R:. Data scale nicely, confirming the continuous nature of the
transition.
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FIG. 11. Scaling plot of &, /L as a function of R;. Results for
k=1land N = 2.
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FIG. 12. Scaling plot of & as a function of J. Results for k = 1
and N = 2.

We now proceed to the computation of the critical in-
dices. To estimate the correlation-length exponent v, we first
perform fits to Eq. (27), where we use a polynomial approxi-
mation for f(X). We obtain v = 0.788(2) and v = 0.796(4)
from the analysis of R and U, respectively. However, the
x? (weighted sum of the fit residuals) for the fit of R is
large: x2/DOF = 2.5, where DOF is the number of degrees
of freedom of the fit. This may indicate that there are sizable
scaling corrections. Therefore, we performed a second set of
fits to

R = f(X)+ L “gX), (28)

which includes the leading scaling corrections. The x? of the
fit is little sensitive to w in the range w = 0.5. Varying w in
this range we can estimate

v = 0.815(15), J.=0.29333(3). (29)

N
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FIG. 13. Scaling plot of the cumulant H,; as a function of X =
(k — k)L, for v; = 0.629971 and k. = 0.40200. Results for J =
0.4 and N = 25.
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The corresponding scaling plots of U and R are reported in
Fig. 16. We finally estimate the exponent 7, defined by the
size dependence of the susceptibility x at the critical point:
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FIG. 15. Scaling plot of U as a function of R;. Results for x = 1
and N = 25.
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FIG. 16. Scaling plot of U (top) and R versus X = (J — J.)L'",
for v =0.815 and J. = 0.29333. Results for k = 1 and N = 25.

x ~ L*>7"a. We perform fits to [45]
X = LM fy (Re) + L™, (Ro)1. (30)
Correspondingly, we obtain the estimate
ng = 0.88(2). (31)

The fit is also sensitive to w and gives w = 1.1(2). This esti-
mate is quite reasonable, since we expect w — 1 in the limit
N — oo. The quality of the fit is excellent, see Fig. 17.

V. SUPPRESSING THE MONOPOLES IN THE
HIGHER-CHARGE CP"~! MODEL

In the previous sections we have discussed the phase
diagram of the AH compact model with ¢ = 2. As it has
been discussed at length in the literature [12—14,23-27], the
critical behavior is supposed to depend on the topology of
the gauge fields and in particular on the presence/absence
of monopoles. In particular, it was shown in our previous
work [27] on the ¢ = 1 monopole-free CPY~! model, that
monopole suppression leads to a different critical behavior.
No Heisenberg transition is observed for N = 2, while for
N = 25 anovel critical behavior appears, whose interpretation
within the field-theory framework is still obscure [45].
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sults for k = 1 and N = 25.

We wish now to investigate the role that monopoles play
in higher-charge systems. As in Ref. [27], we use the De
Grand-Toussaint [81] monopole definition and consider the
model in which monopoles are absent. We shall focus on the
model with x = 0, that will be referred to as the monopole-
free CPY~! (MFCP"~!) model. As we shall discuss below,
this will be enough to conjecture a plausible phase diagram
for any ¥ > 0.

For k¥ = 0, in the absence of the monopole constraint, the
model with charge-¢ fields is obviously equivalent to the usual
one. However, the introduction of the monopole-suppression
constraint which is applied to the A fields breaks the equiv-
alence and thus a different behavior is possible. We have
performed numerical simulations, studying two cases, g = 2
and g = 3.

Let us first consider the MFCP!. We have performed sim-
ulations on systems with L = 16, 24, 32. In Fig. 18 we show
our numerical estimates of U versus R;. Data scale nicely,
clearly indicating that scaling corrections are small. Moreover,

FIG. 18. Plot of the Binder parameter U versus R for ¢ = 2 and
g = 3 for the MFCP! model. The continuous line is the universal
curve U = F(R;) in the standard Heisenberg model [80].

data fall on top of the O(3) scaling curve, allowing us to
infer that the transition, for both values of ¢, belongs to the
O(3) universality class, as in the standard CP! model without
monopole suppression. Apparently the monopole constraint,
which is crucial in determining the critical behavior for g = 1,
plays no role for g > 2. We also performed fits of the data to

R(B,L) = frl(J —J L], (32)

taking R = R and U, and using a polynomial approximation
for fr(x). We find that the estimates of v are consistent with
the Heisenberg value, vy & 0.711. Fixing v to the Heisenberg
value [59] vy = 0.71164(10), we can estimate the critical
temperature: J, = 0.7074(3) for ¢ =2 and J. = 0.6980(6)
for g = 3. These two estimates are very close to the transi-
tion temperature for the standard CP! model, J. = 0.7102(1),
while they differ significantly from the ¢ = 1 MFCP! value,
J. =0.4605(3). It is quite clear that the monopole con-
straint is not effective for ¢ > 2. To verify the irrelevance
of monopole suppression we have also performed simulations
with ¢ = 2 and larger values of N. For N = 10, 20 we observe
strong first-order transitions, that are completely analogous
to those observed in the standard CP¥~! model. Appar-
ently, monopole suppression is not effective for any value
of N.

The results obtained for k = 0 allow us to conjecture that
monopole suppression does not play any role for any x > 0.
Indeed, the introduction of the interaction term H, defined in
Eq. (3) leads to a reduction of the number of monopoles as «
increases. Thus, we expect the role of monopole suppression
to be maximal for x = 0. Therefore, the irrelevance for k = 0
leads us to predict that they irrelevant for any « > 0.

VI. CONCLUSIONS

We have considered 3D lattice AH models with compact
gauge fields and multicomponent complex scalar fields with
integer charge g. We have discussed the dependence on the
charge g of the phase diagram and the nature of the phase
transitions.

The resulting phase diagram for ¢ = 2—but we expect a
qualititively similar diagram for any ¢ > 2—and unit-length
scalar fields (London limit) is sketched in Fig. 1. There
are three phases, separated by three different transition lines
meeting at a MCP. There is one phase (DC phase) in which
the scalar fields are disordered—the SU(N) global sym-
metry is unbroken—and single-charge external particles are
confined—Wilson loops obey the area law for large sizes. In
the other two phases (OC and OD) the SU(N) symmetry is
broken. They differ in the behavior of single-charge external
particles: they are confined for small « (OC phase), decon-
fined for large x (OD phase).

The nature of the transition lines depends on the number
of components. For N = 2 the transitions along the DC-OC
line are continuous, belonging to the O(3) vector universality
classes. Along this line the scalar-field degrees of freedom
order, the SU(N) symmetry breaks, while gauge-field modes
play no role. The transitions along the OC-OD line are
continuous and belong to the Ising universality class. The
transitions are driven by the gauge degrees of freedom, while
the scalar field plays no role. Finally, first-order transitions
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are observed along the DC-OD line, ending to the O(4)
critical point for k — oo. The phase diagram substantially
differs from that observed for the compact AH model with
single-charge scalar fields [44], whose phase diagram has two
phases, differing only in the behavior of the gauge-invariant
scalar-field correlations; they are separated by a line of
continuous transitions belonging to the O(3) vector universal-
ity class [44], where the gauge correlations do not play any
role.

To characterize the large-N behavior of the model, we have
also reported a numerical study for N = 25. The transitions
along the OC-OD line are continuous and belong to the Ising
universality class, like the case N = 2. The behavior along the
DC-OC and OC-OD line instead differs. Indeed, the DC-OC
transitions are of first order, while the DC-OD transitions
are continuous. We have determined the correlation-length
exponent v and the exponent 7, that characterizes the critical
behavior of the order parameter Q, defined in Eq. (6), on the
DC-OD line. We find v = 0.815(15) and n, = 0.88(2). Inter-
estingly, they are in quantitative agreement with the exponents
obtained along the Coulomb-Higgs transition line in the AH
model with noncompact gauge fields [45]: v = 0.802(8) and
ng = 0.883(7). In Ref. [45] we conjectured that the Coulomb-

Higgs transitions in the noncompact AH model belong to the
universality class associated with the stable fixed point of
the multicomponent AH field theory [1,72,73], cf. Eq. (20).
Indeed, the numerical results were in excellent agreement with
the 1/N predictions computed in the continuum AH model
[1,82]: v ~ 0.805 and n, ~ 0.870. This comparison leads us
to conjecture that also the critical behavior of the large-N con-
tinuous DC-OC transitions belongs to the universality class
associated with the stable 3D fixed point of the AH field
theory.

The analogies between the phase diagram of compact AH
models with doubly charged multicomponent scalar fields and
that of the noncompact AH models [45], and, in particular,
the correspondence of the DC-OD critical behavior with the
AH field theory, may appear quite unexpected, and certainly
deserves further investigation. We finally note that the non-
compact formulation of the AH theory is recovered in the
g — oo limit of the compact formulation, with an appropriate
rescaling of the gauge couplings, Knco = k/q° (Kneo in the
inverse gauge coupling in the noncompact model). Thus, it
is tempting to conjecture that the phase diagram and, in par-
ticular, the nature of the transitions along the DC-OD line, is
the same for any g > 2.
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