Integrated photonics enabled the capability to implement complex interferometers with a large number of modes. The applications of this experimental toolbox can be found in different quantum information tasks, including quantum walks and simulation [1], quantum metrology [2], up to the implementation of Boson Sampling [3-6], one of the most promising candidates to reach experimentally the regime where a quantum device solves a computational problem faster than its classical counterpart. Both from a fundamental aspect and for characterization purposes, it becomes crucial to identify tools allowing to learn the action of an unknown transformation.

Genetic algorithms to learn an unknown linear transformation / Spagnolo, Nicolo'; Maiorino, Enrico; Vitelli, Chiara; Bentivegna, Marco; Crespi, Andrea; Ramponi, Roberta; Mataloni, Paolo; Osellame, Roberto; Fabio Sciarrino, And. - (2017). (Intervento presentato al convegno European Quantum Electronics Conference 2017 tenutosi a Munich).

Genetic algorithms to learn an unknown linear transformation

Nicolò Spagnolo;Chiara Vitelli;Marco Bentivegna;Roberta Ramponi;Paolo Mataloni;
2017

Abstract

Integrated photonics enabled the capability to implement complex interferometers with a large number of modes. The applications of this experimental toolbox can be found in different quantum information tasks, including quantum walks and simulation [1], quantum metrology [2], up to the implementation of Boson Sampling [3-6], one of the most promising candidates to reach experimentally the regime where a quantum device solves a computational problem faster than its classical counterpart. Both from a fundamental aspect and for characterization purposes, it becomes crucial to identify tools allowing to learn the action of an unknown transformation.
2017
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1474202
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact