This paper formally highlights how the multirate sampled data equivalent model can be exploited for prediction in an MPC formulation in order to mitigate the possible instability arising from an MPC design while ensuring prefixed boundedness of the control amplitude. This last aspect is in particular addressed and solved with reference a class of systems which admit, under feedback, a computable sampled model.
On unconstrained MPC through multirate sampling / Elobaid, M.; Mattioni, M.; Monaco, S.; Normand-Cyrot, D.. - 52:16(2019), pp. 388-393. (Intervento presentato al convegno 11th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2019 tenutosi a Vienna; Austria) [10.1016/j.ifacol.2019.11.811].
On unconstrained MPC through multirate sampling
Elobaid M.
;Mattioni M.
;Monaco S.
;Normand-Cyrot D.
2019
Abstract
This paper formally highlights how the multirate sampled data equivalent model can be exploited for prediction in an MPC formulation in order to mitigate the possible instability arising from an MPC design while ensuring prefixed boundedness of the control amplitude. This last aspect is in particular addressed and solved with reference a class of systems which admit, under feedback, a computable sampled model.File | Dimensione | Formato | |
---|---|---|---|
Elobaid_On-Unconstrained-MPC_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Contatta l'autore |
Elobaid_Preprint_On-Unconstrained-MPC_2019.pdf
accesso aperto
Note: https://doi.org/10.1016/j.ifacol.2019.11.811
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
840.38 kB
Formato
Adobe PDF
|
840.38 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.