Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied.

Fast moving of a population of robots through a complex scenario / Nesi, Leandro; Antonelli, Dario; Pepe, Gianluca; Carcaterra, Antonio. - 2:(2020), pp. 217-225. (Intervento presentato al convegno First international nonlinear dynamics conference, NODYCON2019 tenutosi a Rome, Italy) [10.1007/978-3-030-34747-5_22].

Fast moving of a population of robots through a complex scenario

Leandro Nesi;Dario Antonelli;Gianluca Pepe;Antonio Carcaterra
2020

Abstract

Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied.
2020
First international nonlinear dynamics conference, NODYCON2019
swarm robotic; swarm migration; adaptive velocity strategy
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Fast moving of a population of robots through a complex scenario / Nesi, Leandro; Antonelli, Dario; Pepe, Gianluca; Carcaterra, Antonio. - 2:(2020), pp. 217-225. (Intervento presentato al convegno First international nonlinear dynamics conference, NODYCON2019 tenutosi a Rome, Italy) [10.1007/978-3-030-34747-5_22].
File allegati a questo prodotto
File Dimensione Formato  
Nesi_Preprint_fast-moving_2020.pdf

accesso aperto

Note: https://link.springer.com/chapter/10.1007/978-3-030-34747-5_22
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 806.9 kB
Formato Adobe PDF
806.9 kB Adobe PDF
Nesi_Frontespizio-indice_fast-moving_2020.pdf

solo gestori archivio

Note: 10. 1007/978-3-030- 34747-5
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.08 MB
Formato Adobe PDF
7.08 MB Adobe PDF   Contatta l'autore
Nesi_fast-moving_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 14.65 MB
Formato Adobe PDF
14.65 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1310809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact